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The semi-mathing problem
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• eah lient needs 1 server (dM(u) = 1 for all u ∈ U)

• all servers should have ≈ equal "load" (dM(v)),that is we want to minimize the following ost funtion:
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(the �rst is the "total ompletion time" interpretation) 1
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Key de�nition (of non-swappable)a semi-mathing M is non-swappableif for all paths vuw, vu ∈ M , uw ∈ E \ M : dM(v) − dM(w) ≤ 1

V

U

v w

u

M

dM(w) = 1dM(v) = 2

when dM(v) − dM(w) > 1 then vuw is alled bad path !

Main theorema non-swappable semi-mathing M is a 2 (or 3) - approximation ofthe minimum ost semi-mathing 3



Sketh of the proof of the main theorem
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dM(v) = 3 dM(?) = 2 dM(?) = 1 dM(w) = 0

• M - non-swappable semi-mathing
• M1 - after swapping "yellow" paths
• cost(M) − cost(M1) = 2(dM(v) − dM(w) − 1) ≤ 2(k − 1) ≤ 2kwhere k is the number of yellow paths
• M , M1, M2, ..., M∗ - optimal semi-mathing
• cost(M) − cost(M∗) ≤ 2|U |, |U | ≤ cost(M∗), cost(M) ≤ 3cost(M∗)4



What are "long yellow paths" ?

• M - input semi-mathing, M∗ - optimal semi-mathing

• we de�ne a digraph D with :
V (D) = V

(u, v) ∈ E(D) ⇐⇒ {u, a} ∈ M and {a, v} ∈ M∗ for a ∈ U

• fat: D an be deomposed into ar-disjoint open trails

• these trails orrespond to "long yellow paths" ...
5



Our main algorithm (for small ∆(V ))

• in a distributed/synhronous model of omputation

• take arbitrary semimathing M and make it non-swappable

• it must be done very arefully, beause...
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• our algorithm is working in O(∆(V )5)-rounds
• it omputes 2 (or 3) -approximation of semi-mathing problem6



Our main algorithm (for small ∆(V ))Proedure SemiMath(G = (V, U, E))1. ∀u ∈ U pik an arbitrary edge euinident to u and let M =
⋃

u∈U eu.2. for k = 0 to ∆ − 2for i = 0 to 2∆(a) ∀v∈V l(v) = dM(v)
∀t=0,...,∆ Lt = {v ∈ V |l(v) = t}(b) X = Badind(V>k+1, Vk)() S = Ends(X), Sc = V \ S(d) M = M ⊕ X(e) for j = 0 to 2∆2� Y =

⋃k
t=1 Badind(Lt ∩ S, Lt−1 ∩ Sc)� S = S ∪ Ends(Y ) \ Starts(Y )

Sc = V \ S� M = M ⊕ Y3. return M

Vk := {v ∈ V : dM(v) = k}

V>x := {v ∈ V : dM(v) > x}

Bad(A, B) - a set of badpaths from set A to B

Badind(A, B) - a proedure�nding "independent" set ofpahts in Bad(A, B)
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Our main algorithm (for small ∆(V ))

• in k-th iteration of the main loopwe eliminate bad paths from Bad(V>k+1, Vk) ...

V0VkVk+2V∆(V )

V>k+1
Vk = {v ∈ V : dM(v) = k}
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Our main algorithm (for small ∆(V ))

• we all Badind(V>k+1, Vk)to �nd independent paths and "swap" them ...

V0VkVk+2V∆(V )

V>k+1

Vk = {v ∈ V : dM(v) = k}
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Our main algorithm (for small ∆(V ))

• ... after O(∆(V )) -iterations Bad(V>k+1, Vk) = ∅

V0VkVk+2V∆(V )

V>k+1

Vk = {v ∈ V : dM(v) = k}
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The algorithm for large ∆(V )

• the redution to MSSC (Min Sum Set Cover) problemon a hipergraph H = (V (H), E(H)), n = |V (H)|

• MSSC problem: �nd a bijetion h : V (H) 7→ {1, ..., n}to minimize the funtion
costMSSC(h) :=

∑

e∈E(H)

min{h(v) : v ∈ e}

• for i := 1 to n do:� �nd a vertex v with the largest dH(v)� h(v) := i, remove from H all hyper-edges ontaining v

• greedy algorithm �nds 4 -approximation of MSSC problem:U. Feige, L. Lovasz, P. TetaliApproximating Min Sum Set CoverAlgorithmia 40(4), (2004) 11



The algorithm for large ∆(V )

• de�nition: q-mathing M is a set of edges suh thatfor all v ∈ V dM(v) ≤ q and for all u ∈ U dM(u) ≤ 1

• we de�ne a hipergraph H as follows:

V (H) - a set of all q-mathings in G

E(H) = U

• note that for v ∈ V (H) and e ∈ E(V ):

v ∈ e ⇐⇒ that q-mathing "v" mathes a vertex "e" from U

dH(v) = size of q-mathing "v"
• while U is not empty� �nd a maximal q-mathing M(and assign to its edges the next number)� remove all verties from U mathed by M 12



The algorithm for large ∆(V )
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costMSSC(M) =
∑

u∈U

g(u) ≈
∑

v∈V

{

dM(v), dM(v) < q
1
qd2

M(v), dM(v) ≥ q

• it works only for speial graphs !when there exists an optimal semi-mathing M∗s.t. ∀v∈V dM∗(v) ≥ q 13



The algorithm for large ∆(V )

• let G satis�es:
δ(V ) ≥ ∆(V )/a and ∆(U) ≤ b; a, b -onst

• there exists an optimal semi-mathing M∗with ∀v∈V dM∗(v) ≥ ∆(V )/(ab)

• the greedy algorithm with q := ∆(V )/(ab)�nds 36-approx of semi-mathing problem,in O(ab2) -rounds
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Open Problems1. onst -approx of the semi-mathing problem for general graphs(or when ∆(U) is onst.)2. PTAS, that is (1 + ǫ) -approx, in O(∆(V )O(1/ǫ)) -rounds3. lower bounds(we only know that �nding optimal semi-mathingrequires Ω(|V |) -rounds...)
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