
Some Simple Distributed Algorithms for Sparse NetworksAlessandro PanconesiDSIUniversit2a La Sapienza di Roma Romeo RizziBRICSUniversity of <ArhusOctober ABC ADDDAbstractWe give simple) deterministic) distributed algorithms for computing maximal match6ings) maximal independent sets and colourings7 We show that edge colourings with atmost 9:  ; colours) and maximal matchings can be computed within O<log n = :>deterministic rounds) where : is the maximum degree of the network7 We also show howto @nd maximal independent sets and <: = ;>6vertex colourings within O<log n =: >deterministic rounds7 All hidden constants are very small and the algorithms are verysimple7Key wordsC distributed computing) sparse networks) maximal independent set) maximalmatching) vertex colouring) edge colouring7 IntroductionIn this paper* we give fast and simple* deterministic distributed algorithms for computingseveral graph structures6 maximal matchings* maximal independent sets* and vertex6 andedge6colourings8 The algorithms are very simple and are very fast when the maximum degreeof the network is small8 In a distributed context* computing these structures quickly can beuseful to schedule operations* especially i=o transfers >see ?@* A* BCD8 The model we consideris the synchronous* messageEpassing network8 Here* a graph G models a distributed networkor architecture* as follows8 Every vertex of G corresponds to a processor and every edge to abidirectional communication link8 It is also assumed that every processor has its own uniqueID and that this is an integer between H and n* the number of vertices of G8 This is withoutloss of generality because IDs are used only in comparisons with other IDs8Computation proceeds in a sequence of rounds* where in each round every processorreceives messages from the neighbours* it does some amount of local computation* and sendsmessages to the neighbours8 The complexity of a distributed algorithm* or protocol* is* bydeJnition* the number of rounds needed by the algorithm to compute8 Since typically sendingmessages is orders of magnitude more costly than performing a LreasonableM amount of localcomputation* this model gives a rough* but reasonably good* approximation of the costincurred by distributed protocols8 Notice that in particular the cost of sending a messagebetween two nodes must be at least proportional to their distance in the network8 ThisH



makes the model orthogonal to the PRAM where communication is completely free and onlycomputation is charged for8 As stated9 computation is free in our model but if needed it canbe easily taken into account; just charge for it= We remark that the algorithms described inthis paper perform very simple local steps and therefore their cost9 including computation9is the same order of magnitude as the stated communication cost8 Our results are as follows8The input to the algorithms is a BdistributedC network of maximum degree E and n vertices8 We give an OBE F log nC algorithm for computing maximal matchingsG We give an OBE F log nC algorithm for computing BHE" ICJedge colouringsG We give an OBE F log nC algorithm for computing BE F ICJvertex colouringsG We give an OBE F log nC algorithm for computing maximal independent sets8We remark that the hidden constants here are really small8 This makes our algorithmsKlocalL in the following senseM if we keep E Nxed and let n9 the number of vertices9 grow9 thecomplexity remains essentially constant8Comparison with previous work0 While maximal matchings can be computed in polyJlogarithmic9 in n9 time in the distributed model OPQ9 it is a decade old open problem whetherthe same running time is achievable for the remaining R structures OI9 P9 S9 ITQ8 The maxiJmal matching algorithm in OPQ takes OBlog! nC rounds and therefore this result appears to beat the moment only of theoretical interest8 For bounded degree graphs the situation lookssomewhat better8 In particular9 Goldberg and Plotkin OXQ give algorithms for the problemswe consider whose complexity is OBlog nC8 At Nrst glance this looks better than the comJplexity of our algorithms9 but there is a catch8 There is a hidden additive constant whichis at least E" where E is the maximum degree of the network8 Therefore our algorithmscompare favourably with those in OXQ8In a short but interesting paper9 Linial OSQ showed that ZBlog nC many communicationrounds is a lower bound for computing the graph structures considered in this paper on aring topology8 This result does not imply the same bound for all constant degree graphs8Intuitively9 low degrees KdecreaseL the capability of the network to disperse informationquickly8 The result however does easily generalize to constant degree graphs Bsay9 EJregulargraphs9 for E constantC for maximal independent sets and BE F ICJvertex colouring Bjustreplace every edge of the ring with a EJcliqueC8 It does not seem to generalize so easily tomaximal matchings and BHE " ICJedge colourings and we leave this as an open problem8 Inthe same paper9 Linial also showed that within OBlog nC many communication rounds it ispossible to compute vertex colourings using OBE C many colours8In OIQ9 a very simple9 deterministic vertex colouring algorithm is given whose complexityis OBE log nC many rounds8 The algorithm uses E F I many colours Band can be used toedge colour the network with HE " I coloursC8 With a straightforward modiNcation thealgorithm also computes maximal independent sets Band maximal matchingsC8 Therefore9 asfar as maximal independent sets and vertex colourings are concerned9 this algorithm is stillasymptotically better than our algorithms for values of E larger than log n8 The simplicityof the algorithm in OIQ is comparable to that of our algorithms8H



 Generating a Forest Decomposition in Constant TimeOur algorithms are based on a simple procedure which partitions the edge set of the inputnetwork in constant time5 The decomposition is generated as follows7 Let du be the degree of vertex u5 Each vertex u< in parallel< ranks the edges incidentupon itself arbitrarily5 By ranking we mean that each edge incident upon u receivesa distinct number between ? and du5 We call this number uAs proposal for that edge5Therefore every edge gets two proposals< one for each endpoint5 The colour of edge uv is deBned to be the proposal of the endpoint with highest ID5This procedure partitions the edge set into at most C classes5 We now show that each class isa forest of rooted arborescences5 Recall that a rooted arborescence is a rooted< directed tree5Claim '() For i E ?$ % % % $C let Ei be the set of edges with colour i3 Then Fi 7E FV$EiG isa forest of G5 for i E ?$ % % % $C3 Furthermore5 if every edge is oriented from the endnode ofsmaller ID to the one of higher ID5 then all such forests consist of outward rooted arbores9cences3Proof; First we observe that no two edges of the same colour can be oriented towards a samenode< say v5 Assume to the contrary that u v and u!v are two such edges5 But v assignsdiJerent proposals to the edges incident to itself< a contradiction5To conclude the proof we must exclude the existence of directed cycles inside any Fi5Now< since every edge is oriented from the endnode of smaller ID to the one of higher ID<we can exclude the existence of directed cycles altogether< since the orientation is induced bya total order of the nodes5  De+nition '(' We shall refer to the forest so computed as a forest decomposition of G3The algorithm works with an arbitrary proposal scheme that orders the edges incident toa vertex5 In particular< the following Algorithm ? can be adopted7Algorithm ) Rooted Trees?5 Each vertex sends its ID number to all of its neighborsMN5 The edges incident upon each vertex are ordered by decreasing ID value ofthe other endnodeM the rank so obtained is the proposal made by the vertexMO5 Each edge selects the proposal coming from the endnode of higher ID52 Matchings and Edge ColouringsIn PQR< Goldberg et al5 give a distributed algorithm to colour the nodes of a rooted arborescenceT with three colours C $ C!$ C" within OFlog nG rounds< provided that each vertex has itsO



own ID# knows its father# and the root knows to be the root/ The hidden constant here isvery small/ The algorithm was devised for the PRAM model but it is easily veri<ed to be abona<de distributed algorithm in our sense/ The arborescences of Claim >/? satisfy the aboveproviso and therefore the procedure of Goldberg et al/ can be applied to them/We start by showing how to compute a maximal matching in a directed tree T withinODlog nE rounds/ Let T be a rooted arborescence whose nodes are partitioned into threedisjoint independent sets C # C!# C"/ If one just chooses a single outgoing edge for every nodein C # then the edges so selected are independent/ Let M be this matching and repeat theoperation# now with C!# in the Ileft overJ subtree obtained by removing all nodes in M /This will return a matching M! which can be added to M # and# repeating with C"# a lastmatching M" is obtained/ Let us now show that the resulting edge set M KL M !M! !M"is a maximal matching/ First notice that when Mi is computed# the edges selected by thevertices of colour i do not share endpoints currently in the tree since only outgoing edgesare selected/ Second# these edges cannot share endpoints with edges included in a previousMj # j ' i# because all vertices matched by Mj were removed from the tree/ Therefore#M KL M !M! !M" is a matching/ To see that M is maximal# suppose by contradictionthat an edge uv could be added to M / Suppose moreover without loss of generality that uis the father of v and that CDuE L i "L j L CDvE/ Let us consider the time when colour i isprocessed# i/e/# when Mi is computed/ There are two cases/ The <rst is that the edge uv isnot present in the tree at that moment/ This implies that either u or v has been previouslymatched# a contradiction/ The other case is that u is present/ But then the set of edgesoutgoing from u is nonempty# which implies that u will be matched/ Again# a contradiction/Therefore M is maximal/Since the trees comprising each forest are vertex disjoint# a maximal matching in a forestcan be computed by simultaneously computing maximal matchings in each tree of the forest#and by adding these matchings together/ We have established the following/Fact &'( Let F be a forest of the forest decomposition of G0 If F is 23vertex coloured then8a maximal matching of F can be computed within 2 communication rounds0Therefore# denoting by F # , , , # F# a forest decomposition of G# and assuming that eachforest is already PQvertex coloured# a maximal matching M !M! ! , , , !M# is obtainedas follows/ First# compute a maximal matching M in F # delete the vertices of M fromG# thereby obtaining a IleftQoverJ graph G! together with a IleftQoverJ forest decompositionF !!# , , , # F !#/ Then# compute M! in F !!# remove all nodes in M!# and so on# for a total of Rsuch phases/ The algorithm is spelled out as Algorithm >/Clearly# this procedure computes a maximal matching/ As noted# computing a PQvertexcolouring of the forests takes ODlog nE many rounds# since this can be done simultaneouslyfor all Fi/ Building the matching incrementally takes R phases# each of which necessitatesOD?E many rounds/Theorem &'( A maximal matching of G can be computed within ODlog nSRE rounds0Let us now switch to the problem of computing an edge colouring of G with >R#? colourswithinODlog nSRE rounds/ One possibility would be to compute in sequence >R#? maximalV



Algorithm ) Match ! Compute a forest decomposition F ! " " " ! F! of G!Direct all edges from lower ID node to higher ID node67! Compute a 89vertex colouring of each Fi< in parallel!Let ci be the colouring of Fi68! M ?@ !6A! for i ?@  to B doC! for c ?@  to 8 doD! Every u such that ciGuH @ c selects arbitrarily one of its outgoing edges6let Mc be the set of edges so selected6I! M ?@M"Mc6J! Remove all vertices of Mc from the graph!matchings< but this would take MGB"Nlog nH many rounds! We shall then proceed as follows!Let Fi be a forest of a forest decomposition of G and assume that it is 89coloured already!Let c ? V GFiH # f ! 7! 8g be the 89colouring! Consider the following partition of EGFiH< theedge set of Fi< into three sets Eci < c @  ! 7! 8< whereEci ?@ fuv ? u is the tail and cGuH @ cg"Observation 34) Each set Eci is made of node-disjoint stars whose centers are the nodes ofFi of colour c3Note that the sets Eci partition E! Therefore< Algorithm 8< whose correctness will be arguedshortly< computes a G7B&  H9edge colouring!Algorithm 3 Edge Color ! Compute a forest decomposition F ! " " " ! F! of the input graph G and a89vertex colouring ci for each Fi67! for i @  ! " " " !B do?8! for ci @  ! 7! 8 do?A! The centers of the stars of Eci assign diSerent colours from the intervalT ! " " " ! 7B &  U to the edges in their respective stars< paying attentionnot to create conVicts with previously coloured edges!To convince ourselves that Step A of the above algorithm can always be carried out< recallthat each edge is adjacent to at most 7B & 7 other edges< and that we are using 7B &  colours! Observation 8!7 implies< for given i and c< that the colouring operations of the starsare always mutually compatible! Therefore the algorithm computes a G7B& H9edge colouring!The complexity is clearly as stated!Theorem 34) Algorithm 6 computes a G7B &  H-edge colouring of the input graph G inOGB N log nH many communication rounds3 C



 Vertex Colourings and Maximal Independent SetsIn this section we show how to *nd a proper /0 1 234colouring of the nodes of G withinO/log n10 3 deterministic rounds: As a consequence= we will obtain a deterministic proto4col to *nd a maximal independent set of G within the same bound: Note that the complementof a maximal independent set is a minimal node cover and also a minimal dominating set:Therefore= our algorithm applies to these problems as well:The vertex colouring algorithm is based on the following two ideas: The *rst idea isthat if G is k4vertex coloured= where perhaps k is much larger than 0= the maximum degreeof G= the k4colouring can be shrunk to a /0 1 234vertex colouring simply as followsE Foreach i G 0 1 H$0 1 I$ % % % $ k= all vertices with colour i= in parallel= recoulor by picking anyavailable colour in the set f2$ % % % $0 1 2g: This is correct since each colour class of theoriginal k4colouring is an independent set and therefore all recolouring choices are mutuallycompatible: The number of rounds needed is k#0#2: We shall refer to this as the shrinkingprocedure:The second idea is that the problem of /01234vertex colouring G can be reduced to thatof I4vertex colouring each forest of a forest decomposition of G= as follows: Let F!$ % % % $ F"be the forest decomposition= and let A EG   i#!E/Fi3be the edge set of the *rst ) forests: Suppose= by induction= that GMAN= the subgraph inducedby the edge set A= is /01234vertex coloured already= and that F $! is I4vertex coloured: Let* and c= respectively= be the two colourings of GMAN and F $!: Then= /*$ c3 is a /I0 1 I34colouring of GMA$F $!N which can be shrunk to a /01234colouring in H01H rounds by theshrinking procedure: Here is the resulting Algorithm P:Algorithm ) Color2: Compute a forest decomposition F!$ % % % $ F" of the input graph G and aI4vertex colouring ci for each FiRH: for i G 2$ % % % $0 do finclude Fi one at a timegI: for k EG 2 to 0 1 2 do fshrink /*$ c3 to a /0 1 23 colouring gP: for c EG H to I doS: all vertices u such that */u3 G k and ci/u3 G c set */u3 to an arbitrarycolour in the set f2$ % % % $0 1 2g and not assigned to any neighborv of u with ci/v3 . c:To obtain a maximal independent set we only need to consider a minor modi*cationof Algorithm P: In step S= instead of assigning u to any available colour= assign u to thesmallest possible colour: Then= when Algorithm P terminates colour class 2 will be a maximalindependent set of G: Clearly= each colour class computed by Algorithm P is an independentset: Maximality follows since if */u3 %G 2 then u has at least one neighbour with colour 2:U
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