Fast distributed approximation in planar graphs

Andrzej Czygrinow, Wojciech Wawrzyniak, Michal Hanckowiak

September 20, 2008

Model of computation

distributed, message passing, synchronous (known sa *LOCAL* in D. Peleg book "Distributed Computing...")

communication graph: planar

Our problems

basic graph problems: MWIS, MIS, MDS

```
deterministic (1 \pm \epsilon)-approximation algorithms
in O(\log^* n) time (number of rounds)
```

randomized $(1 \pm \epsilon)$ -approximation algorithm in O(1) time for MIS

some lower bound

Main tool for deterministic approx.: clusters

clusters: partiton of V(G) into disjoint sets V_1, \ldots, V_k each $G[V_i]$ is connected and has constant diameter

edge weight function $\omega : E(G) \to R^+$

we can compute clusters s.t.: weight of connectors $< \epsilon \ \omega(E(G))$, for constant $\epsilon > 0$, in time $O(\log^* n)$, deterministically ... *Input*: planar graph G, weights on edges ω *Output*: clusters with weight of connectors $< \epsilon \ \omega(E(G))$

definition a directed graph F with max-out-degree = 1 is called a *pseudo forest*

- 1. Each vertex $v \in V(G)$ puts outgoing arrow on the heaviest $\{v, u\}$ (we get pseudo forest F s.t. $\omega(E(F)) > \frac{1}{6}\omega(E(G))$)
- 2. We compute 3-vertex-coloring of F using CV algorithm, in $O(\log^* n)$ time
- 3. Each vertex $v \in V(F)$, in parallel:
 - (a) if color(v) = 1 then v marks all incoming edges or outgoing edge (whatever is heavier)
 - (b) if color(v) = 2 then v marks all incoming edges to color 3 or outgoing edge to color 3 (whatever is heavier)

Let Q_i be a connected component of the graph induced by marked edges in F: $diam(Q_i) < 10$

4. In each Q_i find disjoint stars of weight $> \frac{1}{2}\omega(E(Q_i))$ We have disjoint stars of weight $> \frac{1}{24}\omega(E(G))$... Iterate $\log(\frac{1}{\epsilon})/\log(\frac{24}{23})$ times:

- 1. Call the above procedure
- 2. Contract stars to vertices and recompute weights of edges (must be = the sum of weight of edges between stars)

The algorithm works in $O(\log^* n)$, for arbitrary initial weight of edges.

How to $(1 - \epsilon)$ -aproximate MWIS

We have a planar graph G with weights on vertices $\omega: V(G) \to R^+$

- 1. Define $\omega(\{u, v\}) := \min(\omega(u), \omega(v))$
- 2. Compute clusters with weight of connectors $< \epsilon \omega(E(G))$
- 3. In each cluster compute (optimal) MWIS
- 4. In case of errors on connectors: remove from the solution the vertex of smaller weight.

We know that $\omega(MWIS(G)) > \frac{1}{4}\omega(V(G))$ and $\omega(E(G)) < 3\omega(V(G))$ therefore vertices removed in (4) are meaningless ...

How to $(1 + \epsilon)$ -approximate MDS

- G planar (unweighted) graph...
 - 1. Find const approximation of MDS *D* in graph *G* using Lenzen, Oswald, Wattenhofer, "What Can Be Approximated Locally?" (SPAA 2008)
- 2. For $D = \{v_1, \ldots, v_k\}$ build small clusters $\{W_1, \ldots, W_k\}$ in natural way.
- 3. Contract each W_i to a single vertex to get graph H, and assing $\omega(e) := 1$ for all $e \in E(H)$.
- 4. Compute clusters in H s.t. the number of connectors is $\langle \epsilon E(H) \rangle$ (also the number of border vertices in clusters is $\langle O(\epsilon) V(H) \rangle$).
- 5. Return to input graph G with big clusters (composed of small clusters) and compute (optimal) MDS D_i in each big clusters C_i .

Why the solution $(\cup_i |D_i|)$ is close to optimal?

Let $D^* = MDS(G)$, and look at single cluster $C_i \dots$ $|C_i \cap D^* \cup B_i| \ge |D_i|$

where B_i is a set of leaders of all small border clusters in C_i

$$|D^*| + \sum_i |B_i| \ge \sum_i |D_i|$$

and $\sum_i |B_i| < \epsilon |V(H)|$, |V(H)| < const |MDS(G)|.

How to $(1 - \epsilon)$ -aproximate MIS in constant time with high probability

- 1. Remove all vertices of degree $> O(1)/\epsilon$
- 2. In subgraph induced by vertices of degree \leq 9 compute independent set *I* in two rounds:
 - each vertex v:
 - (a) marks itself with probability 1/2
 - (b) unmarks itself if there is a marked neighbour

 $|I| > |G|/(2^{9+2}(9^2+1))$ with high probability ...

- 3. Remove I and repeat that process M times to get sets I_1, \ldots, I_M . (M is a constant).
- 4. Each vertex of I_i puts arrow on the heaviest of its 9 edges to $\bigcup_{j>i}I_j$. We have a set of rooted trees of diameter 2M ...

- We have disjoint subgraphs, with constant number of edges(!), containing constant fraction of E(G), with high probability.
- We can contract them, (re)compute weight of edges, and repeat this process to get clusters and to approximate (unweighted) MIS problem.

Lower bounds

 ${\boldsymbol{C}}$ - a cycle on ${\boldsymbol{n}}$ vertices.

We can prove that any algorithm working in time T on C can compute independent set of size at most $O(\frac{n}{\log^{(2T)}n})$.

==> const approximation of MIS in C can not be done in constant time

==> it is not possible to compute better than 5-approximation of MDS in planar graphs, in constant time

Proof: Build the following graph G from a cycle C

Let D be $(5 - \epsilon)$ -approx of MDS in G and lets define $D_i = \{v \in D : deg_{C[D]}(v) = i\}.$

We can construct an independent set I in C in the following way:

- 1. $I := D_0$
- 2. add to I one of each $D_1 D_1$ pair
- 3. add to I all D_1 vertices that have a neighbor from D_2

I is an independent set in $C\,\ldots\,$

$$|\mathsf{MDS}(G)| = \frac{n}{5} 4|D_0| + 3|D_1| \ge n - |D| |D| < (5 - \epsilon)\mathsf{MDS}(G) = (1 - \frac{\epsilon}{5})n |I| \ge |D_0| + \frac{|D_1|}{2} \ge \frac{\epsilon n}{30}$$

I is a const approximation of MIS in C, which can not be approximated in constant time ...