Fast distributed approximation in planar graphs

Andrzej Czygrinow, Wojciech Wawrzyniak,
Michal Hanckowiak
September 20, 2008

Model of computation

distributed, message passing, synchronous (known sa LOCAL in D. Peleg book "Distributed Computing...") communication graph: planar

Our problems

basic graph problems: MWIS, MIS, MDS
deterministic ($1 \pm \epsilon$)-approximation algorithms in $O\left(\right.$ log $\left.^{*} n\right)$ time (number of rounds)
randomized ($1 \pm \epsilon$)-approximation algorithm in O (1) time for MIS
some lower bound

Main tool for deterministic approx.: clusters

clusters: partiton of $V(G)$ into disjoint sets V_{1}, \ldots, V_{k} each $G\left[V_{i}\right]$ is connected and has constant diameter
edge weight function $\omega: E(G) \rightarrow R^{+}$
we can compute clusters s.t.: weight of connectors $<\epsilon \omega(E(G))$, for constant $\epsilon>0$, in time $O\left(\right.$ log $\left.^{*} n\right)$, deterministically \ldots

Input: planar graph G, weights on edges ω
Output: clusters with weight of connectors $<\epsilon \omega(E(G))$
definition a directed graph F with max-out-degree $=1$
is called a pseudo forest

1. Each vertex $v \in V(G)$ puts outgoing arrow on the heaviest $\{v, u\}$ (we get pseudo forest F s.t. $\omega(E(F))>\frac{1}{6} \omega(E(G))$)
2. We compute 3-vertex-coloring of F using $C V$ algorithm, in $O\left(\log ^{*} n\right)$ time
3. Each vertex $v \in V(F)$, in parallel:
(a) if $\operatorname{color}(v)=1$ then v marks all incoming edges or outgoing edge (whatever is heavier)
(b) if $\operatorname{color}(v)=2$ then v marks all incoming edges to color 3 or outgoing edge to color 3 (whatever is heavier)

Let Q_{i} be a connected component of the graph induced by marked edges in F : $\operatorname{diam}\left(Q_{i}\right)<10$

can not be both marked ...
4. In each Q_{i} find disjoint stars of weight $>\frac{1}{2} \omega\left(E\left(Q_{i}\right)\right)$

We have disjoint stars of weight $>\frac{1}{24} \omega(E(G)) \ldots$
Iterate $\log \left(\frac{1}{\epsilon}\right) / \log \left(\frac{24}{23}\right)$ times:

1. Call the above procedure
2. Contract stars to vertices and recompute weights of edges (must be $=$ the sum of weight of edges between stars)

The algorithm works in $O\left(\log ^{*} n\right)$, for arbitrary initial weight of edges.

How to ($1-\epsilon$)-aproximate MWIS

We have a planar graph G with weights on vertices $\omega: V(G) \rightarrow R^{+}$

1. Define $\omega(\{u, v\}):=\min (\omega(u), \omega(v))$
2. Compute clusters with weight of connectors $<\epsilon \omega(E(G))$
3. In each cluster compute (optimal) MWIS
4. In case of errors on connectors: remove from the solution the vertex of smaller weight.

We know that $\omega(\operatorname{MWIS}(G))>\frac{1}{4} \omega(V(G))$ and $\omega(E(G))<3 \omega(V(G))$ therefore vertices removed in (4) are meaningless ...

How to $(1+\epsilon)$-aproximate MDS

G - planar (unweighted) graph...

1. Find const approximation of MDS D in graph G using Lenzen, Oswald, Wattenhofer, "What Can Be Approximated Locally?" (SPAA 2008)
2. For $D=\left\{v_{1}, \ldots, v_{k}\right\}$ build small clusters $\left\{W_{1}, \ldots, W_{k}\right\}$ in natural way.
3. Contract each W_{i} to a single vertex to get graph H, and assing $\omega(e):=1$ for all $e \in E(H)$.
4. Compute clusters in H s.t. the number of connectors is $<\epsilon E(H)$ (also the number of border vertices in clusters is $<O(\epsilon) V(H)$).
5. Return to input graph G with big clusters (composed of small clusters) and compute (optimal) MDS D_{i} in each big clusters C_{i}.

Why the solution $\left(\cup_{i}\left|D_{i}\right|\right)$ is close to optimal?
Let $D^{*}=\operatorname{MDS}(G)$, and look at single cluster $C_{i} \ldots$

$$
\left|C_{i} \cap D^{*} \cup B_{i}\right| \geq\left|D_{i}\right|
$$

where B_{i} is a set of leaders of all small border clusters in C_{i}

$$
\left|D^{*}\right|+\sum_{i}\left|B_{i}\right| \geq \sum_{i}\left|D_{i}\right|
$$

and $\sum_{i}\left|B_{i}\right|<\epsilon|V(H)|,|V(H)|<$ const $|\operatorname{MDS}(G)|$.

How to ($1-\epsilon$)-aproximate MIS in constant time with high probability

1. Remove all vertices of degree $>O(1) / \epsilon$
2. In subgraph induced by vertices of degree ≤ 9 compute independent set I in two rounds:

- each vertex v :
(a) marks itself with probability $1 / 2$
(b) unmarks itself if there is a marked neighbour
$|I|>|G| /\left(2^{9+2}\left(9^{2}+1\right)\right)$ with high probability \ldots

3. Remove I and repeat that process M times to get sets I_{1}, \ldots, I_{M}. (M is a constant).
4. Each vertex of I_{i} puts arrow on the heaviest of its 9 edges to $\cup_{j>i} I_{j}$. We have a set of rooted trees of diameter $2 M \ldots$

- We have disjoint subgraphs, with constant number of edges(!), containing constant fraction of $E(G)$, with high probability.
- We can contract them, (re)compute weight of edges, and repeat this process to get clusters and to approximate (unweighted) MIS problem.

Lower bounds

C - a cycle on n vertices.
We can prove that any algorithm working in time T on C can compute independent set of size at most $O\left(\frac{n}{\log ^{(2 T)} n}\right)$.
$==>$ const approximation of MIS in C can not be done in constant time
$==>$ it is not possible to compute better than 5-approximation of MDS in planar graphs, in constant time

Proof: Build the following graph G from a cycle $C \ldots$.

Let D be $(5-\epsilon)$-approx of MDS in G
and lets define $D_{i}=\left\{v \in D: \operatorname{deg}_{C[D]}(v)=i\right\}$.
We can construct an independent set I in C in the folowing way:

1. $I:=D_{0}$
2. add to I one of each $D_{1}-D_{1}$ pair
3. add to I all D_{1} vertices that have a neighbor from D_{2}
I is an independent set in $C \ldots$
$|\operatorname{MDS}(G)|=\frac{n}{5}$
$4\left|D_{0}\right|+3\left|D_{1}\right| \geq n-|D|$
$|D|<(5-\epsilon) \operatorname{MDS}(G)=\left(1-\frac{\epsilon}{5}\right) n$
$|I| \geq\left|D_{0}\right|+\frac{\left|D_{1}\right|}{2} \geq \frac{\epsilon n}{30}$
I is a const approximation of MIS in C, which can not be approximated in constant time ...
