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Model of omputation

distributed, message passing, synhronous

(known sa LOCAL in D. Peleg book "Distributed Computing...")

ommuniation graph: planar

Our problems

basi graph problems: MWIS, MIS, MDS

deterministi (1 ± ǫ)-approximation algorithms

in O(log∗ n) time (number of rounds)

randomized (1 ± ǫ)-approximation algorithm in O(1) time for MIS

some lower bound
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Main tool for deterministi approx.: lusters

connectors cluster

constant diameter

lusters: partiton of V (G) into disjoint sets V1, . . . , Vk

eah G[Vi] is onneted and has onstant diameter

edge weight funtion ω : E(G) → R+

we an ompute lusters s.t.: weight of onnetors < ǫ ω(E(G)),

for onstant ǫ > 0, in time O(log∗ n), deterministially ...
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Input: planar graph G, weights on edges ω
Output: lusters with weight of onnetors < ǫ ω(E(G))

de�nition a direted graph F with max-out-degree = 1

is alled a pseudo forest

1. Eah vertex v ∈ V (G) puts outgoing arrow on the heaviest {v, u}

(we get pseudo forest F s.t. ω(E(F)) > 1
6ω(E(G)))

2. We ompute 3-vertex-oloring of F using CV algorithm, in O(log∗ n)

time

3. Eah vertex v ∈ V (F), in parallel:

(a) if color(v) = 1 then v marks all inoming edges or outgoing

edge (whatever is heavier)

(b) if color(v) = 2 then v marks all inoming edges to olor 3 or

outgoing edge to olor 3 (whatever is heavier)
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Let Qi be a onneted omponent of the graph indued by marked

edges in F : diam(Qi) < 10

1 2 3 2 3 1

can not be both marked ...

4. In eah Qi �nd disjoint stars of weight > 1
2ω(E(Qi))

We have disjoint stars of weight > 1
24ω(E(G)) ...

Iterate log(1
ǫ)/ log(24

23) times:

1. Call the above proedure

2. Contrat stars to verties and reompute weights of edges

(must be = the sum of weight of edges between stars)

The algorithm works in O(log∗ n), for arbitrary initial weight of edges.



How to (1 − ǫ)-aproximate MWIS

We have a planar graph G with weights on verties ω : V (G) → R+
1. De�ne ω({u, v}) := min(ω(u), ω(v))

2. Compute lusters with weight of onnetors < ǫ ω(E(G))

3. In eah luster ompute (optimal) MWIS

4. In ase of errors on onnetors: remove from the solution the

vertex of smaller weight.

We know that ω(MWIS(G)) > 1
4ω(V (G)) and ω(E(G)) < 3ω(V (G))

therefore verties removed in (4) are meaningless ...

10 15

remove
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How to (1 + ǫ)-aproximate MDS

G - planar (unweighted) graph...

1. Find onst approximation of MDS D in graph G using

Lenzen, Oswald, Wattenhofer, "What Can Be Approximated Lo-

ally?" (SPAA 2008)

2. For D = {v1, . . . , vk} build small lusters {W1, . . . , Wk} in natural

way.

3. Contrat eah Wi to a single vertex to get graph H,

and assing ω(e) := 1 for all e ∈ E(H).

4. Compute lusters in H s.t. the number of onnetors is < ǫ E(H)

(also the number of border verties in lusters is < O(ǫ) V (H)).

5. Return to input graph G with big lusters (omposed of small

lusters) and ompute (optimal) MDS Di in eah big lusters Ci.
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Why the solution (∪i|Di|) is lose to optimal?

Let D∗ = MDS(G), and look at single luster Ci ...

|Ci ∩ D∗ ∪ Bi| ≥ |Di|

where Bi is a set of leaders of all small border lusters in Ci

|D∗| +
∑

i

|Bi| ≥
∑

i

|Di|

and

∑
i |Bi| < ǫ|V (H)|, |V (H)| < const |MDS(G)|.

C_i

small border cluster



How to (1− ǫ)-aproximate MIS in onstant time

with high probability

1. Remove all verties of degree > O(1)/ǫ

2. In subgraph indued by verties of degree ≤ 9 ompute indepen-

dent set I in two rounds:

• eah vertex v:

(a) marks itself with probability 1/2

(b) unmarks itself if there is a marked neighbour

|I| > |G|/(29+2(92 + 1)) with high probability ...

3. Remove I and repeat that proess M times to get sets I1, . . . , IM .

(M is a onstant).

4. Eah vertex of Ii puts arrow on the heaviest of its 9 edges to

∪j>iIj. We have a set of rooted trees of diameter 2M ...
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• We have disjoint subgraphs, with onstant number of edges(!),

ontaining onstant fration of E(G), with high probability.

• We an ontrat them, (re)ompute weight of edges, and repeat

this proess to get lusters and to approximate (unweighted) MIS

problem.

"trash"

I2I1 IM

< 1/ǫ ≤ 9



Lower bounds

C - a yle on n verties.

We an prove that any algorithm working in time T on C an ompute

independent set of size at most O( n

log(2T ) n
).

==> onst approximation of MIS in C an not be done in onstant

time

==> it is not possible to ompute better than 5-approximation of

MDS in planar graphs, in onstant time

Proof: Build the following graph G from a yle C ....

D_0

D_1
D_1

D_1 D_2

C

G
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Let D be (5 − ǫ)-approx of MDS in G
and lets de�ne Di = {v ∈ D : degC[D](v) = i}.

We an onstrut an independent set I in C in the folowing way:

1. I := D0

2. add to I one of eah D1 − D1 pair

3. add to I all D1 verties that have a neighbor from D2

I is an independent set in C ...

|MDS(G)| = n
5

4|D0| + 3|D1| ≥ n − |D|

|D| < (5 − ǫ)MDS(G) = (1 − ǫ
5)n

|I| ≥ |D0| +
|D1|
2 ≥ ǫn

30

I is a onst approximation of MIS in C, whih an not be approximated

in onstant time ...


