
The Anatomy of the BACI PCODE File

Bill Bynum/Tracy Camp
College of William and Mary/Colorado School of Mines

November 5, 2002

Contents

1 Introduction 2

2 The PCODE Table 4

3 The Identifier Table 5
3.1 The identifier Field of the Identifier Table . 5
3.2 The link Field of the Identifier Table . 5
3.3 The obj Field of the Identifier Table . 6
3.4 The type Field of the Identifier Table . 6
3.5 The ref Field of the Identifier Table . 7
3.6 The normal Field of the Identifier Table . 7
3.7 The lev Field of the Identifier Table . 8
3.8 The adr Field of the Identifier Table . 8
3.9 The mon Field of the Identifier Table . 9
3.10 The atomic Field of the Identifier Table . 10

4 Block Table 12
4.1 The last Fields of the Block Table . 12
4.2 The lastpar Field of the Block Table . 12
4.3 The psize and vsize Fields of the Block Table . 13

5 The Array Table 14
5.1 The elref Field of the Array Table . 14
5.2 The inxtype Field of the Array Table . 15
5.3 The eltyp Field of the Array Table . 15
5.4 The low and high Fields of the Array Table . 15
5.5 The elsize and size Fields of the Array Table . 16

6 The String Table 17

7 The Input File Table 18

8 The PCODE Debugging Information Table 19

A Entire PCODE File for Example Program 21

B Disassembled PCODE for Example Program 24

1

Chapter 1

Introduction

This document describes the form and function of the components of the BACI executable files, the files with
.pco and .pob suffixes. These are the files produced by the BACI C−− and Concurrent Pascal compilers.
The .pob file is produced by the BACI compilers when the user invokes the -c option at compilation, which
induces the compilers to relax the requirement that the file produced by the compilation contain a main
procedure. This option was added in 1996 to prepare for separate compilation. The form of the .pob file is
identical to that of the .pco file. Both file types will be referred to in this manual as a “PCODE file”.

The PCODE file consists of seven tables: the PCODE Table, containing the instructions executed by the
BACI PCODE interpreter; the Identifier Table, containing the symbols used by the program; the Block Table,
describing the static blocks of the program; the Array Table, describing the array variables of the program;
the String Table, containing the strings used by the program; the Input File Table, listing the source files
used to create the PCODE file; and the PCODE Debugging Information Table, used by the BACI PCODE
interpreter to associate the source code line numbers with PCODE addresses.

These seven sections of the PCODE file will be described in the context of the C−− example shown in
Figure 1.1 on page 3.

The entire PCODE file for this example is included in its entirety in Appendix A. We will discuss each
of the seven tables of the PCODE file in the chapters that follow.

2

CHAPTER 1. INTRODUCTION 3

BACI System: C-- to PCODE Compiler, 13:40 7 Jun 2000
Source file: example.cm Fri Jun 30 10:13:48 2000
line pc

1 0 // Source file to produce a PCODE file for use as an example
2 0
3 0
4 0 int i = 17;
5 0
6 0 string[20] s;
7 0
8 0 int q[10]; // a simple array
9 0

10 0 char r[3][6][4]; // a more complicated array
11 0
12 0 #include "example.inc" // bring in the procedure called "included_proc"

> 1 0 // a proc for inclusion into the example program
> 2 0
> 3 0 void included_proc(int& i,int ival, int ix, int qixval)
> 4 0 {
> 5 0 int p = 3;
> 6 3 int w = 72;
> 7 6 cout << "p = " << p << " w = " << w << endl;
> 8 13 i = ival;
> 9 16 q[ix] = qixval;
> 10 21 }
Returning to file example.cm
13 22
14 22 int main()
15 23 {
16 23 stringCopy(s,"a string for you");
17 25 cout << "s = \"" << s << "\"" << endl;
18 30 included_proc(i,44,4,77);
19 37 cout << "i = " << i << " q[4] = " << q[4] << endl;
20 47 r[1][4][2] = ’A’;
21 56 r[0][1][3] = ’B’;
22 65 cout << "r[1][4][2] = ’" << r[1][4][2]
23 73 << "’ r[0][4][3] = " << r[0][1][3] << "’\n";
24 86 }

Figure 1.1: Example C−− Source Program

Chapter 2

The PCODE Table

The PCODE Table is shown below in abbreviated form in Figure 2.1. The PCODE Table consists of the 91
PCODE instructions generated by the C−− compiler for the example source program.

The first two lines of Figure 2.1 are the “header lines” included in the PCODE file by the compiler to
show the compiler version and the name of the primary source file.

The third line of Figure 2.1 gives the first (0) and last indices (90) of the entries in the PCODE table.
The fourth line of Figure 2.1 names the columns that follow. The lc label refers to the location counter

value for each PCODE instruction.
Each PCODE instruction consists of an instruction opcode and an x and y operands. The exact meaning

of each instruction is not important to understanding the format of the PCODE Table. More information
about the PCODE for this example is contained in the disassembled version of the program PCODE included
in Appendix B.

BACI System: C-- to PCODE Compiler, 13:40 7 Jun 2000
Source file: example.cm Fri Jun 30 10:13:48 2000
0 90 PCODE table
lc f x y
0 0 1 9
1 24 0 3
2 38 0 0
3 0 1 10
4 24 0 72

...
84 29 0 3
85 28 0 87
86 31 0 0
87 0 0 0
88 24 0 17
89 38 0 0
90 81 0 0

Figure 2.1: The PCODE Table

4

Chapter 3

The Identifier Table

The Identifier Table for the example source program is shown in Figure 3.1.

1 13 IDENTIFIER table
index identifier link obj type ref normal lev adr mon atomic

1 ++-outer-++ 0 7 0 0 1 0 87 0 0
2 i 1 1 1 0 1 0 0 0 0
3 s 2 1 11 6 1 0 1 0 0
4 q 3 1 7 0 1 0 7 0 0
5 r 4 1 7 1 1 0 17 0 0
6 included_pro 5 3 0 1 1 0 0 0 0
7 i 0 1 1 0 0 1 5 0 0
8 ival 7 1 1 0 1 1 6 0 0
9 ix 8 1 1 0 1 1 7 0 0

10 qixval 9 1 1 0 1 1 8 0 0
11 p 10 1 1 0 1 1 9 0 0
12 w 11 1 1 0 1 1 10 0 0
13 main 6 6 0 2 1 0 22 0 0

Figure 3.1: Identifier Table for Example Program

The first line of the Identifier Table gives the indices that the entries of the table will occupy in the
interpreter’s tab array used at runtime. In this case, the index for the ++-outer-++ symbol in the tab array
will be 1, and the index for the main symbol in the tab array will be 13. Entry 0 of the Identifier Table is
used by the two BACI compilers as a “sentinel” location for searching the Identifier Table and is not used
by the BACI PCODE interpreter.

3.1 The identifier Field of the Identifier Table

The identifier field of an entry in the Identifier Table is the name of the given symbol, truncated to 12
characters. As you can see, the name of the included_proc function has been truncated to included_pro.

3.2 The link Field of the Identifier Table

For each program block (procedure or function), the symbols accessible in that block are maintained in a
linked list using the link field of the Identifier Table. This linked list is used by the BACI compilers and
the PCODE intererpeter for searching the Identifier Table. The compilers must search the Identifier Table
during compilation each time another symbol is seen in the input. The PCODE interpreter must the Identifier

5

CHAPTER 3. THE IDENTIFIER TABLE 6

Table when presenting runtime debugging information, such as the values of the variables of a procedure or
function.

For a given block, the index in the tab array of the last symbol in the block is given by the last field of
the entry for that block in the Block Table (see Section 4.1 on page 12 below). Starting at this entry of the
tab array and using the link field to obtain the tab index of the next element of the list will traverse all of
the symbols defined in the given block. The value of the link field for the last element in the linked list is
zero.

As an example, the last field of the entry of the Block Table corresponding to the include_proc block
has value 12 (see Section 4.1), the index of the local variable w. The value of the link field for the w entry
is 11, the index of the tab entry for the p local variable (that is, tab[12].link is 11). The value of the
link field for the p entry is 10, the index of the tab entry for the qixval parameter. The value of the link
field for the qixval entry is 9, the index of the tab entry for the ix parameter. The value of the link field
for the ix entry is 8, the index of the tab entry for the ival parameter. The value of the link field for the
ival entry is 7, the index of the tab entry for the i parameter. Finally, the value of the link field for the i
entry is 0, indicating that there are no other symbols in this block. The included_pro symbol belongs to
the main block, and thus appears in the linked list for the main block.

3.3 The obj Field of the Identifier Table

The obj field of the Identifier Table contains the value of a C enumerated type used to characterize what sort
of object the symbol is. This field is used heavily by both compilers. The BACI PCODE interpreter uses the
field to determine the stack addresses of program variables at runtime. The possible values are shown below
in Figure 3.2.

name in
value enumerated type description

0 constant program constant
1 variable program variable
2 type user-defined type
3 procedure void function
4 function non-void function
5 monitor Hoare monitor
6 mainproc main procedure
7 outerblock startup initialization code
8 ext procedure external void function
9 ext function external non-void function
10 ext monitor external Hoare monitor
11 ext variable external program variable

Figure 3.2: Possible Values of the obj Field of the Identifier Table

3.4 The type Field of the Identifier Table

The type field of the Identifier Table contains the value of a C enumerated type used to characterize the type
of a symbol. This field is used heavily for type-checking by both compilers and the PCODE interpreter. The
possible values are shown in Figure 3.3 on page 7.

CHAPTER 3. THE IDENTIFIER TABLE 7

name in
value enumerated type description

0 notyp untyped
1 ints integer
2 bools boolean (used only in Pascal)
3 chars character
4 bsems binary semaphore
5 sems semaphore
6 conds condition of a Hoare monitor
7 arrays array
10 rawstrings a quoted string (e.g., “xyz”)
11 strings string variable

Figure 3.3: Possible Values of the type Field of the Identifier Table

3.5 The ref Field of the Identifier Table

The ref field of the Identifier Table is used as an index into one of the tables of the PCODE file. The table
used depends on the type or obj field of the symbol.

For an array symbol (type field of 7), the ref field is the index of the symbol’s entry in the Array Table.
For example, the value of the ref field for the q symbol (entry 4 in the Identifier Table) is 0, the index of the
q array in the Array Table. The value of the ref field for the r symbol (entry 5 in the Identifier Table) is 1,
the index of the r array in the Array Table.

For a symbol representing a procedure or function (an obj field of 3, 4, 6, 7, 8, or 9), the ref field is
the index of the symbol’s entry in the Block Table. For example, the ref field for the outer block (entry 1 in
the Identifier Table) is 0, the index of the entry for the outer block in the Block Table. The ref field for the
included_proc procedure (entry 6 in the Identifier Table) is 1, the index of the entry for included_proc
in the Block Table. The ref field for the main procedure (entry 13 in the Identifier Table) is 2, the index of
the entry for main in the Block Table.

For a symbol representing a string variable (a type field of 11), the ref field is the size of the string,
expressed as the number of 4-byte words required by the string on the PCODE interpreter’s runtime stack.
The s symbol (at index 3 of the Identifier Table) was declared to be a string of length 20 (i.e., its C−− type
is string[20]), so it will require a minimum of 21 bytes on the interpreter’s runtime stack (the extra byte
is the space for the string’s null terminator byte 0x00). To store 21 bytes on the interpreter’s stack , 6 4-byte
stack words will be required. Thus, the value of the ref field for the symbol s is 6.

The ref field is unused for all other members of the Identifier Table.

3.6 The normal Field of the Identifier Table

This normal field of the Identifier Table applies only to symbols in the table that are formal parameters of
a procedure or function. The value of the normal field is 0 for a pass-by-reference parameter. The value of
the normal field is 1 for all other entries in the Identifier Table. For example, the value of the normal field
for the formal parameter i of the included_proc procedure (entry 7 of the Identifier Table) is 0, reflecting
the fact that i is a reference parameter of the procedure. The value of the normal field for the other formal
parameters of the included_proc procedure (entries 8, 9, and 10 in the Identifier Table) is 1, indicating that
these parameters are pass-by-value parameters.

The field is used by the BACI compilers to generate appropriate PCODE for referencing procedure or
function parameters. The BACI PCODE interpreter ignores the normal field.

CHAPTER 3. THE IDENTIFIER TABLE 8

3.7 The lev Field of the Identifier Table

The lev field of a symbol gives the static level of the program at which the symbol was declared. For
example, lev fields of the global variables i, s, q, and r and the functions included_proc and main are
0, since these symbols were declared at the global level (level 0). The lev fields for the variables of the
included_proc procedure, i, ival, ix, qixval, p, and w are 1, since these variables are declared in the
include_proc block (level 1).

Global variables, procedures, functions, and monitors are at level 0. Monitor procedures and functions
are at level 1, but are linked into global level (level 0) through their link fields (see Section 3.2). This
makes the monitor procs visible at the global level during compilation. Monitor variables are at level 1.
Local variables of monitor procedures or functions are at level 2.

The parameters of a procedure or function in C−− or Pascal are at the same level as the procedure or
function, so that they will be visible in the “outer” scope, just like the name of the procedure or function is.
The level of the wocal variables of a procedure or function is one higher than the level of the procedure or
function.

For a .pob file produced by C−−, the lev field of all symbols is either 0, 1, or 2, since nesting is not
allowed. Because the Concurrent Pascal compiler allows static nesting up to seven levels, symbols with a
lev field larger than 1 can occur.

Both compilers and the PCODE interpreter use the lev field for accessing program variables. See
Section 3.8 for a discussion of variable referencing using the lev and adr fields.

3.8 The adr Field of the Identifier Table

The adr field of the Identifier Table is relevant for the symbols in the identifier table that are either program
blocks (procedures or functions) or program variables.

For a program block, the adr field is the address (that is, the index in the Code Table) of the entry
point of the block. For example, the adr field of the ++-outer-++ symbol (the outer block created by the
compiler to hold initialization code, element 1 of the Identifier Table) is 87, the entry point of the outer
block. The adr field of the include_pro symbol is 0, the entry point of the procedure. The adr field of the
main symbol is 22, the entry point of the main program.

For a program variable, the BACI PCODE interpreter (and the compilers, too) use the lev and adr fields
of the Identifier table to determine the runtime stack address of the variable. The PCODE interpreter uses a
display to enforce static program structure at runtime. The lev entry of the display is the offset to the stack
location of the variable from the base of the stack frame of the current program block at static level lev.
Stated another way, the runtime stack address of a program variable is simply the sum

display[lev] + adr.

The program block at static level 0 is always the outer (global) scope, and the base of the stack frame for
the global scope is always stack location 0 (that is, display[0] = 0). Thus, for a global variable (a symbol
in the Identifier Table whose lev field is 0), the stack address of the variable is simply the adr field of the
symbol.

For example, global variable i (at index 2 of the Identifier Table) is at stack location 0, global variable s
(at index 3 of the Identifier Table) is at stack location 1, global variable q (at index 4 of the Identifier Table)
is at stack location 7, and global variable r (at index 5 of the Identifier Table) is at stack location 17.

The stack address of the actual parameter corresponding to the formal parameter i of the included_proc
procedure is determined by adding 5 (its adr field) to the base of the stack frame of the activation of the
procedure (the value in display[1]). Since the parameter i is a reference parameter, the value stored at
this stack location will be the (stack) address of the parameter, rather than the value of the actual parameter.
The values of Since the actual parameters ival, ix, and qixval are passed by value, the values of these

CHAPTER 3. THE IDENTIFIER TABLE 9

parameters (and not the addresses of these parameters) will be located 6, 7, and 8 words, respectively, above
the base of the stack frame of the activation of the procedure. The values of the local variables p and w will
be located 8 and 9 words, respectively, above the base of the stack frame of the activation of the procedure.

3.9 The mon Field of the Identifier Table

The mon field of the Identifier Table is used by the BACI compilers and PCODE interpreter to implement the
semantics of calls to procedures and functions of a Hoare monitor. The mon field of a procedure or function
of a Hoare monitor contains the index in the Identifier Table of the Hoare monitor in which the procedure or
function was declared. The mon field for all other entries in the Identifier Table is zero.

The PCODE interpreter uses the mon field to enforce the mutual exclusion required of calls to monitor
procedures or functions. Only one call to a procedure or function of a monitor can be active at any time
– all other simultaneously active threads of execution in the monitor must be suspended and subsequently
revived when execution is again possible.

A short example to illustrate the use of the mon field is shown in Figure 3.4. This example contains a
Hoare monitor to manage allocation and release of a single resource.

BACI System: C-- to PCODE Compiler, 13:40 7 Jun 2000
Source file: mon-alloc.cm Fri Jun 30 14:40:53 2000
line pc

1 0 // Hoare monitor to allocate a single resource
2 0 // See Operating System Concepts, 4th ed, Silberschatz & Galvin p197
3 0
4 0 monitor resource_alloc {
5 0 int busy; // 1 if resource is busy, 0 otherwise
6 0 condition free; // condition on which to wait until resource is free
7 0
8 0 void acquire()
9 1 {

10 1 if (busy) { // if resource is busy, then
11 3 waitc(free); // .. wait until resource is free
12 6 busy = 1; // just awakened, mark the resource as busy
13 9 }
14 9 }
15 11
16 11 void release()
17 12 {
18 12 busy = 0; // resource no longer needed
19 15 signalc(free); // awake someone waiting (possibly)
20 17 }
21 19
22 19 init { busy = 0; } // initially the resource is free
23 23
24 23 } // resource_alloc monitor

Figure 3.4: A Hoare Monitor in C−− for Allocating a Single Resource

The Identifier and Block Tables for this example are shown in Figure 3.5 on page 10. The resource_alloc
monitor has index 2 in the Identifier Table. The mon fields of the acquire and release procedures of the
monitor at entries 6 and 7 of the Identifier Table have value 2 to indicate that these procedures belong to the
resource_alloc monitor. The mon fields of all other entries of the Identifier Table are zero.

CHAPTER 3. THE IDENTIFIER TABLE 10

1 6 IDENTIFIER table
index identifier link obj type ref normal lev adr mon atomic

1 ++-outer-++ 0 7 0 0 1 0 23 0 0
2 resource_all 1 5 0 1 1 0 19 0 0
3 busy 0 1 1 0 1 1 5 0 0
4 free 3 1 6 0 1 1 6 0 0
5 acquire 2 3 0 2 1 1 0 2 0
6 release 5 3 0 3 1 1 11 2 0

0 3 BLOCK table
index last lastpar psize vsize

0 6 0 0 0
1 4 2 5 7
2 0 5 5 5
3 0 6 5 5

Figure 3.5: Block and Identifier Tables for a Hoare Monitor in C−−

3.10 The atomic Field of the Identifier Table

The atomic field of a symbol in the Identifier Table is 1 only if the symbol corresponds to a procedure or
function that has been declared as atomic in the program source. The PCODE interpreter uses the atomic
field of the Identifier Table to ensure that a procedure or function so declared is non-preemptible when the
program is executed.

A short example to illustrate the use of the atomic field is shown in Figure 3.6. This example contains
a compare_and_swap synchronization primitive.

BACI System: C-- to PCODE Compiler, 13:40 7 Jun 2000
Source file: comp-swap.cm Fri Jun 30 15:26:58 2000
line pc

1 0 // define a compare_and_swap synchronization primitive
2 0 // if ’w’ and ’old’ are the same, then store ’new’
3 0 // at the reference parameter ’w’ and return 1;
4 0 // otherwise return 0.
5 0 atomic int compare_and_swap(int& w, int old, int new)
6 0 {
7 0 if (w == old)
8 4 {
9 4 w = new;

10 7 return 1;
11 11 }
12 11 else
13 12 {
14 12 return 0;
15 16 }
16 16 } // compare_and_swap

Figure 3.6: An Atomic Compare-and-Swap Synchronization Primitive in C−−

The Identifier and Block Tables for this example are shown in Figure 3.7 on page 11.
The atomic field of the compare_and_swap symbol (entry 2) of the Identifier Table is 1 to mark the

procedure to the PCODE interpreter as non-preemptible. Each time this function is called, all of its PCODE
instructions will be executed, from the entry point of the call to the return, with no possibility of an inter-
ruption by a context switch.

CHAPTER 3. THE IDENTIFIER TABLE 11

1 5 IDENTIFIER table
index identifier link obj type ref normal lev adr mon atomic

1 ++-outer-++ 0 7 0 0 1 0 17 0 0
2 compare_and_ 1 4 1 1 1 0 0 0 1
3 w 0 1 1 0 0 1 5 0 0
4 old 3 1 1 0 1 1 6 0 0
5 new 4 1 1 0 1 1 7 0 0

0 1 BLOCK table
index last lastpar psize vsize

0 2 0 0 0
1 5 5 8 8

Figure 3.7: Block and Identifier Tables for an Atomic Compare-and-Swap Function

Chapter 4

Block Table

The Block Table of the PCODE file contains the information needed by the compilers and the PCODE
interpreter to describe the static blocks of the program.

The Block Table for the main example source program is shown in Figure 4.1.

0 2 BLOCK table
index last lastpar psize vsize

0 13 13 0 89
1 12 10 9 11
2 13 13 5 5

Figure 4.1: Block Table for Example Program

The first line indicates that 0 and 2 the smallest and largest indices, respectively, used in the Block
Table. As we know from examining the ref fields of the entries in the Identifier Table in Section 3.5, entry 0
of the Block Table corresponds to the global (outer) block, entry 1 of the Block Table corresponds to the
included_proc block, and entry 2 corresponds to the main block.

4.1 The last Fields of the Block Table

The last field of the Block Table was previously mentioned in Section 3.2 on page 5 when discussing the
link field of the Identifier Table. As previously stated, for a given entry of the Block Table, the last field
of the Block Table contains the index in the Identifier Table of the last symbol of the given block.

The last fields of the outer block and the main block (entries 0 and 2 of the Block Table) have the same
value: namely 13, the index in the Identifier Table of the main symbol. The last field of the included_proc
block (entry 1 of the Block Table) is 12, the index in the Identifier Table of the variable w defined in the
procedure.

4.2 The lastpar Field of the Block Table

The lastpar field of the Block Table contains the index in the Identifier Table of the last parameter of the
block. This field is used by the PCODE interpreter to create an activation record for the block when the
block is called.

As with the last fields, the lastpar fields of the outer block and the main block are again 13, the index
in the Identifier Table of the main symbol. For the main block, this makes sense, but for the outer block it
doesn’t, since the outer block has no parameters. For this reason, the lastpar field for the outer block is

12

CHAPTER 4. BLOCK TABLE 13

used to hold the index in the tab table of the main proc. The PCODE interpreter uses this field to locate the
entry point of the program at execution time.

The lastpar field of the included_proc block (entry 1 of the Block Table) is 10, the index in the Iden-
tifier Table of the right-most parameter in the included_proc function prototype, the qixval parameter. In
the PCODE file for an example program in Appendix A, the value of btab[0].laspar (the lastpar field
of the outer block) is 13, the index of main in the tab array.

4.3 The psize and vsize Fields of the Block Table

The psize and vsize fields of describe two sizes (in 4-byte stack words) associated with the stack frame
of the block. Each BACI stack frame contains five 4-byte words of linkage information in addition to the
storage space for the parameters and local variables of the block. The psize field is the sum the space for the
linkage information (5 words) plus the size (in 4-byte words) of the space needed for the parameters of the
block. The vsize field is the sum the space for the linkage information (5 words), the size (in 4-byte words)
of the space needed for the parameters of the block, and the size (in 4-byte words) of the space needed for
local variables of the block; that is, vsize is psize plus the size (in 4-byte words) of the space needed for
local variables of the block.

Logically, the psize and vsize fields for the outer block and main block have no meaning, since neither
of these blocks is endowed with a stack frame. The psize field of both blocks can safely be ignored. The
vsize of the main block can also be ignored. However, the vsize field of the outer block (always entry 0 of
the Block Table) is used by the interpreter to retrieve the amount of space (in 4-byte stack words) to allocate
on the stack for the global variables of the program.

The vsize field of entry 0 of the Block Table shown in Figure 4.1 on page 12 is 89. This number is
indeed the size of the global variable area of the example program. The global integer i occupies 1 word of
stack space. As discussed in Section 3.5, the s string occupies 6 stack words. As we will see in Section 5.5,
the q array requires 10 words of stack and the r array requires 72 stack words. The sum of these sizes is
1+6+10+72 = 89, the number of words needed for the global variables of the example program.

Chapter 5

The Array Table

The Array Table for the main example source program is shown in Figure 5.1. The first line indicates that 0
and 3 the smallest and largest indices, respectively, used in the Array Table.

0 3 ARRAY table
index inxtype eltyp elref low high elsize size

0 1 1 0 0 9 1 10
1 1 7 2 0 2 24 72
2 1 7 3 0 5 4 24
3 1 3 0 0 3 1 4

Figure 5.1: Array Table for Example Program

As mentioned in Section 3.5, the ref field of an entry in the Identifier Table that corresponds to an array
variable is the variable’s index in the Array Table. According the Identifier Table shown in Figure 3.1 on
page 5, entry 0 of the Array Table describes the q array (this is the value of the ref field of entry 4 (q’s
entry) in the Identifier Table), and entry 1 of the Array Table describes the r array (this is the value of the
ref field of entry 5 (r’s entry) in the Identifier Table).

5.1 The elref Field of the Array Table

Each dimension of each array is described by an entry in the Array Table. The declaration of a multidimen-
sional array, like r in our running example:

char r[3][6][4];

is treated by C−− compiler as if the array were declared in three separate steps:

typedef char dim1[4];
typedef dim1 dim2[6];
dim2 r[3];

Thus, in this example, the r array occupies 3 entries of the Array Table. Entry 1 (as indicated by the
ref field of the entry for r in the Identifier Table) corresponds to the dim2 r[3] declaration above. The
elref field of the Array Table is used to refer to the entry number in the Array Table occupied by an
“anonymous” array type, like the types created by the typedef declarations for dim1 and dim2 above. The
elref field of entry 1 of the Array Table (the entry for the r array) has value 2, the entry corresponding to
the typedef dim1 dim2[6] declaration. The elref field of entry 2 of the Array Table (the entry for the
dim2 dimension) has value 3, the entry corresponding to the typedef char dim1[4] declaration.

14

CHAPTER 5. THE ARRAY TABLE 15

The machinery of the declaration of a multidimensional array guarantees that no “anonymous” array
dimension can occupy entry 0 of the Array Table. Thus, an elref field of 0 for an entry of the Array Table
indicates unambiguously that the type of the elements of the corresponding array is one of the built-in types
and does not refer to the Array Table.

5.2 The inxtype Field of the Array Table

The inxtype field of the Array Table lists the type (as a member of the C enumerated type used in the
type field of the Identifier Table – see Figure 3.3 on page 7 for a listing of the different possible values)
used by the index of the array. In this example, the inxtype field of every entry of the Array Table has
value 1, indicating that all indices are of integer type. This will be true of all examples produced by the
C−− compiler.

The BACI Pascal compiler has two built-in discrete types, integer and boolean (TRUE, FALSE). In
PCODE files created by the BACI Pascal compiler, the inxtype field in the Array Table can contain the
boolean type (having value 2). For example, the following Pascal declaration:

VAR
x : ARRAY [TRUE..FALSE] OF INTEGER;

would generate an entry in the Array Table whose inxtype field has the value 2 (for the boolean type).
At the present time, neither BACI compiler allows user-defined enumerated types, so the appearance of

user-defined type in the inxtype field is not currently possible.

5.3 The eltyp Field of the Array Table

The eltyp field of the Array Table lists the type of the elements of the array (as a member of the C enumer-
ated type used in the type field of the Identifier Table – see Figure 3.3 on page 7 for a listing of the different
possible values).

For a multi-dimensional array like the r variable in our running example, the eltyp field of the “inner-
most” or “last” or “rightmost” dimension of the array will have the enumerated type value for type of the
elements of the array. The eltyp field of the Array Table entries of all other (“outer”) dimensions of the
array will have value 7 (the arrays type). In the case of the three-dimensional array r in our running exam-
ple, the entry for the inner array dimension (the dim1 dimension, element 3 in the Array Table of Figure 5.1
on page 14) has a value 3 (for type char) in its eltyp field, while the “outer dimensions”, the dim2 and
char dimensions in entries 2 and 1 of the Array Table, have eltyp fields of 7, the value for an array type.

5.4 The low and high Fields of the Array Table

The low and high fields of the Array Table describe the smallest and largest values that the index of the
array will have. Since the q array, represented by element 0 of the Array Table, is declared to be of size 10,
its array index will range from 0 to 9, the low and high values of element 0 in the Array Table. The “inner”
dimension of the r array, the so-called char dimension represented by element 1 of the Array Table, has 3
entries, so its array index will range from 0 to 2, yielding the low and high fields of element 1. The entries 2
and 3 of the Array Table corresponding to the dim2 and dim1 dimensions, respectively, of the r array, are
similarly determined to have low and high values of 0 and 5, and 0 and 3, respectively.

Since each array in C begins at 0, the low value of any array declared in a C−− program will be 0.
However, Pascal allows arbitrary integer subranges for array indices. The following Pascal declaration

VAR
w : ARRAY [-11..-3] OF CHAR;

CHAPTER 5. THE ARRAY TABLE 16

will produce a corresponding entry in the Array Table having a low field of −11 and a high field of −3.

5.5 The elsize and size Fields of the Array Table

Recall from Section 5.1 that the declaration of a multidimensional array, like r in this example:

char r[3][6][4];

is treated by C−− compiler as if the array were declared in three separate steps:

typedef char dim1[4];
typedef dim1 dim2[6];
dim2 r[3];

As noted in Section 5.1, the char dimension of the array (entry 3 of the Array Table) has an element size
of one 4-byte word (the BACI PCODE interpreter uses an entire 4-byte stack word to store a single one-byte
character). There are 4 elements in inner char dimension of the array, so the size of a member of this array
type is 4. In fact, the following relationship holds between the size, elsize, low and high fields of any
entry of the Array Table:

size = elsize · (1+high−low)

The elsize value of entry 2 of the Array Table corresponding to the typedef dim1 dim2[6] declara-
tion is 4, the value of the size field of entry 3 corresponding to the typedef char dim1[4] declaration.
Since there are 6 elements in the dim2 “anonymous” array, the size field of this entry of the Array Table
will be 24.

In like manner, the elsize value of entry 1 of the Array Table corresponding to the dim2 r[3] decla-
ration is 24, the size field of entry 2 of the Array Table. Since there are 3 elements in this dimension of the
array, the size field for entry 1 of the Array Table will be 3 ·24 = 72.

Chapter 6

The String Table

The String Table for the main example source program is shown in Figure 6.1. The first line indicates
that the smallest index used in the string table is 0. The second integer, 90 in this case, is the number of
characters (or bytes) in the string table. This usage of the second integer is different from the usage for
any other table in the PCODE file. For any other table in the PCODE file, the second integer is the largest
index of any element in the given table. In the string table, the second integer on the initial line of the table
is one more than the largest index used in the String Table.

The third integer on the initial line of the String Table, 60 in this case, is the number of characters of the
String Table stored on each line of the PCODE file. In Figure 6.1, the null terminator character (the byte
0x00) is represented by the two characters ˆ@.

0 90 60 STRING table
p = ˆ@ w = ˆ@a string for youˆ@s = "ˆ@"ˆ@i = ˆ@ q[4] = ˆ@r[1][4][
2] = ’ˆ@’ r[0][4][3] = ˆ@’
ˆ@

Figure 6.1: String Table for Example Program

With this information, one can verify that the first line of the String Table does indeed correctly contain
60 characters. The String Table appears to span three lines of the PCODE file. However, the BACI PCODE
interpreter will read the newline at the end of the second line of the String Table as a part of the String Table.
To put it another way, after reading the 60 characters on the first line of the String Table, the BACI PCODE
interpreter will read an additional 30 characters of the PCODE file to obtain the 90 characters that the initial
line has indicated are in the String Table. By counting characters, one can verify that the 29-th character of
the second line is the newline at the end of the second line, so that the 30-th character stored into the String
Table by the interpreter will be the null terminator character that it reads after the newline. Recall that the
last string of the source program (see Figure 1.1 on page 3) contains a newline character (\n).

Incidentally, both BACI compilers check to see whether a newly encountered string already appears in
the String Table before storing it. Each user-defined raw string will appear in the String Table exactly once.

17

Chapter 7

The Input File Table

The Input File Table (or Array) is simply the list of the names of the input files that were used by the
compiler to produce the PCODE file. In the case of our running example, the Input File Table is shown in
shown in Figure 7.1. The first line indicates that 0 and 1 the smallest and largest indices, respectively, used
in the Input File Table.

0 1 Input File array
index parent file name

0 -1 example.cm
1 0 example.inc

Figure 7.1: Input File Table for Example Program

The parent field of an entry of the Input File Table contains the index of the entry in the Input File
Table that included the current entry. The file name field of an entry of the Input File Table is the name of
the file.

In Figure 7.1, the parent field of entry 0 of the Input File Table is −1, because the file corresponding
to this entry was the first file that the compiler encountered.nd has no parent The name of this file was
example.cm.

The parent field of entry 1 of the Input File Table corresponding to the file named example.inc is 0,
the index of the entry in the Input File Table that included the example.inc file, namely the example.cm
file.

18

Chapter 8

The PCODE Debugging Information Table

The PCODE Debugging Information Table contains the information that the PCODE interpreter needs to
correspond addresses in the PCODE to source lines in the one or more source files used by the compiler to
produce the PCODE file.

Figure 8.1 shows the PCODE Debugging Information Table for our main example program. The first
line of the table gives the smallest and largest indices used in the table, 0 and 18 in this case.

The flineno field of an entry of the PCODE Debugging Information Table is the largest line number of
the input file given by the findex field for which the value of the location counter during compilation had
the value shown in the lc field. For example, the third line of the table

0 0 12

indicates that the location counter value, lc, was 0 for lines 1 through 12, inclusive, of the example.cm file.

0 18 PCODE debugging information
lc findex flineno
0 0 12
0 1 5
3 1 6
6 1 7

13 1 8
16 1 9
21 1 10
22 1 -10
22 0 14
23 0 16
25 0 17
30 0 18
37 0 19
47 0 20
56 0 21
65 0 22
73 0 23
86 0 24
91 0 -24

Figure 8.1: PCODE Debugging Information Table for Example Program

The next line

0 1 5

19

CHAPTER 8. THE PCODE DEBUGGING INFORMATION TABLE 20

indicates that lc remained at 0 for the first five lines of the included file, example.inc.
The following line

3 1 6

indicates that the lc variable increased to 3 at line 6 of the included file, example.inc.
The rest of the PCODE Debugging Information Table can be explained similarly. A negative flineno

field indicates that the corresponding file was closed after that line was compiled.
The BACI PCODE disassembler, badis, uses the PCODE Debugging Information Table to produce

its output. You may find it instructive to compare the PCODE Debugging Information Table shown in
Figure 8.1 with the disassembly listing contained in Appendix B to see how this information was used.

Appendix A

Entire PCODE File for Example Program

This is the entire PCODE file for the example given in Section 1. In the String Table, the two characters
ˆ@ have been substituted for the zero string termination byte 0x00 each time that it occurs. Other than this
modification, the PCODE file shown is exactly as produced by the bacc compiler.

BACI System: C-- to PCODE Compiler, 13:40 7 Jun 2000
Source file: example.cm Fri Jun 30 10:13:48 2000
0 90 PCODE table
lc f x y
0 0 1 9
1 24 0 3
2 38 0 0
3 0 1 10
4 24 0 72
5 38 0 0
6 28 0 0
7 1 1 9
8 29 0 1
9 28 0 5
10 1 1 10
11 29 0 1
12 63 0 0
13 1 1 5
14 1 1 6
15 38 0 0
16 0 0 7
17 1 1 7
18 21 0 0
19 1 1 8
20 38 0 0
21 32 0 0
22 80 0 87
23 0 0 1
24 111 0 12
25 28 0 29
26 0 0 1
27 110 0 0
28 28 0 35
29 63 0 0
30 18 0 6
31 0 0 0
32 24 0 44
33 24 0 4
34 24 0 77
35 19 0 8

21

APPENDIX A. ENTIRE PCODE FILE FOR EXAMPLE PROGRAM 22

36 3 0 1
37 28 0 37
38 1 0 0
39 29 0 1
40 28 0 42
41 0 0 7
42 24 0 4
43 21 0 0
44 34 0 0
45 29 0 1
46 63 0 0
47 0 0 17
48 24 0 1
49 21 0 1
50 24 0 4
51 21 0 2
52 24 0 2
53 21 0 3
54 24 0 65
55 38 0 0
56 0 0 17
57 24 0 0
58 21 0 1
59 24 0 1
60 21 0 2
61 24 0 3
62 21 0 3
63 24 0 66
64 38 0 0
65 28 0 52
66 0 0 17
67 24 0 1
68 21 0 1
69 24 0 4
70 21 0 2
71 24 0 2
72 21 0 3
73 34 0 0
74 29 0 3
75 28 0 68
76 0 0 17
77 24 0 0
78 21 0 1
79 24 0 1
80 21 0 2
81 24 0 3
82 21 0 3
83 34 0 0
84 29 0 3
85 28 0 87
86 31 0 0
87 0 0 0
88 24 0 17
89 38 0 0
90 81 0 0
1 13 IDENTIFIER table
index identifier link obj type ref normal lev adr mon atomic

1 ++-outer-++ 0 7 0 0 1 0 87 0 0
2 i 1 1 1 0 1 0 0 0 0
3 s 2 1 11 6 1 0 1 0 0
4 q 3 1 7 0 1 0 7 0 0

APPENDIX A. ENTIRE PCODE FILE FOR EXAMPLE PROGRAM 23

5 r 4 1 7 1 1 0 17 0 0
6 included_pro 5 3 0 1 1 0 0 0 0
7 i 0 1 1 0 0 1 5 0 0
8 ival 7 1 1 0 1 1 6 0 0
9 ix 8 1 1 0 1 1 7 0 0

10 qixval 9 1 1 0 1 1 8 0 0
11 p 10 1 1 0 1 1 9 0 0
12 w 11 1 1 0 1 1 10 0 0
13 main 6 6 0 2 1 0 22 0 0

0 2 BLOCK table
index last lastpar psize vsize

0 13 13 0 89
1 12 10 9 11
2 13 13 5 5

0 3 ARRAY table
index inxtype eltyp elref low high elsize size

0 1 1 0 0 9 1 10
1 1 7 2 0 2 24 72
2 1 7 3 0 5 4 24
3 1 3 0 0 3 1 4

0 90 60 STRING table
p = ˆ@ w = ˆ@a string for youˆ@s = "ˆ@"ˆ@i = ˆ@ q[4] = ˆ@r[1][4][
2] = ’ˆ@’ r[0][4][3] = ˆ@’
ˆ@
0 1 Input File array
index parent file name

0 -1 example.cm
1 0 example.inc

0 18 PCODE debugging information
lc findex flineno
0 0 12
0 1 5
3 1 6
6 1 7

13 1 8
16 1 9
21 1 10
22 1 -10
22 0 14
23 0 16
25 0 17
30 0 18
37 0 19
47 0 20
56 0 21
65 0 22
73 0 23
86 0 24
91 0 -24

Appendix B

Disassembled PCODE for Example
Program

This is the disassembly of the PCODE of the example program produced by the BACI PCODE disassembler,
badis.

BACI System: BenAri PCODE Disassembler, 13:40 7 Jun 2000
PCODE file: example.pco Fri Jun 30 10:13:55 2000

BACI System: C-- to PCODE Compiler, 13:40 7 Jun 2000
Source file: example.cm Fri Jun 30 10:13:48 2000
Reading from source file ’example.cm’

1 // Source file to produce a PCODE file for use as an example
2
3
4 int i = 17;
5
6 string[20] s;
7
8 int q[10]; // a simple array
9

10 char r[3][6][4]; // a more complicated array
11
12 #include "example.inc" // bring in the procedure called "included_proc"

Reading from source file ’example.inc’

> 1 // a proc for inclusion into the example program
> 2
> 3 void included_proc(int& i,int ival, int ix, int qixval)
> 4 {
> 5 int p = 3;

lc f x y PCODE
0 0 1 9 LOAD_ADDR, push &p
1 24 0 3 PUSH_LIT 3
2 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

> 6 int w = 72;

3 0 1 10 LOAD_ADDR, push &w
4 24 0 72 PUSH_LIT 72
5 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

24

APPENDIX B. DISASSEMBLED PCODE FOR EXAMPLE PROGRAM 25

> 7 cout << "p = " << p << " w = " << w << endl;

6 28 0 0 WRITE_RAWSTRING stab[0] to stdout
7 1 1 9 LOAD_VALUE, push p
8 29 0 1 WRITE (int) s[t] to stdout, pop(1)
9 28 0 5 WRITE_RAWSTRING stab[5] to stdout

10 1 1 10 LOAD_VALUE, push w
11 29 0 1 WRITE (int) s[t] to stdout, pop(1)
12 63 0 0 WRITELN

> 8 i = ival;

13 1 1 5 LOAD_VALUE, push i
14 1 1 6 LOAD_VALUE, push ival
15 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

> 9 q[ix] = qixval;

16 0 0 7 LOAD_ADDR, push &q
17 1 1 7 LOAD_VALUE, push ix
18 21 0 0 INDEX atab[0], pop(1)
19 1 1 8 LOAD_VALUE, push qixval
20 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

> 10 }

21 32 0 0 EXIT_PROC
Returning to file ’example.cm’

13
14 int main()

22 80 0 87 SHORTCALL to 87, shortcall_reg = pc, pc = 87

15 {
16 stringCopy(s,"a string for you");

23 0 0 1 LOAD_ADDR, push &s
24 111 0 12 COPY_RAWSTRING from stab[12] to s[s[t]], pop(1)

17 cout << "s = \"" << s << "\"" << endl;

25 28 0 29 WRITE_RAWSTRING stab[29] to stdout
26 0 0 1 LOAD_ADDR, push &s
27 110 0 0 WRITE_STRING at s[s[t]] to stdout, pop(1)
28 28 0 35 WRITE_RAWSTRING stab[35] to stdout
29 63 0 0 WRITELN

18 included_proc(i,44,4,77);

30 18 0 6 MARKSTACK included_pro
31 0 0 0 LOAD_ADDR, push &i
32 24 0 44 PUSH_LIT 44
33 24 0 4 PUSH_LIT 4
34 24 0 77 PUSH_LIT 77
35 19 0 8 CALL, psize-1 = 8
36 3 0 1 UPDATE_DISPLAY from level 1 out to level 0

19 cout << "i = " << i << " q[4] = " << q[4] << endl;

37 28 0 37 WRITE_RAWSTRING stab[37] to stdout

APPENDIX B. DISASSEMBLED PCODE FOR EXAMPLE PROGRAM 26

38 1 0 0 LOAD_VALUE, push i
39 29 0 1 WRITE (int) s[t] to stdout, pop(1)
40 28 0 42 WRITE_RAWSTRING stab[42] to stdout
41 0 0 7 LOAD_ADDR, push &q
42 24 0 4 PUSH_LIT 4
43 21 0 0 INDEX atab[0], pop(1)
44 34 0 0 VALUE_AT, s[t] = s[s[t]]
45 29 0 1 WRITE (int) s[t] to stdout, pop(1)
46 63 0 0 WRITELN

20 r[1][4][2] = ’A’;

47 0 0 17 LOAD_ADDR, push &r
48 24 0 1 PUSH_LIT 1
49 21 0 1 INDEX atab[1], pop(1)
50 24 0 4 PUSH_LIT 4
51 21 0 2 INDEX atab[2], pop(1)
52 24 0 2 PUSH_LIT 2
53 21 0 3 INDEX atab[3], pop(1)
54 24 0 65 PUSH_LIT 65
55 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

21 r[0][1][3] = ’B’;

56 0 0 17 LOAD_ADDR, push &r
57 24 0 0 PUSH_LIT 0
58 21 0 1 INDEX atab[1], pop(1)
59 24 0 1 PUSH_LIT 1
60 21 0 2 INDEX atab[2], pop(1)
61 24 0 3 PUSH_LIT 3
62 21 0 3 INDEX atab[3], pop(1)
63 24 0 66 PUSH_LIT 66
64 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

22 cout << "r[1][4][2] = ’" << r[1][4][2]

65 28 0 52 WRITE_RAWSTRING stab[52] to stdout
66 0 0 17 LOAD_ADDR, push &r
67 24 0 1 PUSH_LIT 1
68 21 0 1 INDEX atab[1], pop(1)
69 24 0 4 PUSH_LIT 4
70 21 0 2 INDEX atab[2], pop(1)
71 24 0 2 PUSH_LIT 2
72 21 0 3 INDEX atab[3], pop(1)

23 << "’ r[0][4][3] = " << r[0][1][3] << "’\n";

73 34 0 0 VALUE_AT, s[t] = s[s[t]]
74 29 0 3 WRITE (char) s[t] to stdout, pop(1)
75 28 0 68 WRITE_RAWSTRING stab[68] to stdout
76 0 0 17 LOAD_ADDR, push &r
77 24 0 0 PUSH_LIT 0
78 21 0 1 INDEX atab[1], pop(1)
79 24 0 1 PUSH_LIT 1
80 21 0 2 INDEX atab[2], pop(1)
81 24 0 3 PUSH_LIT 3
82 21 0 3 INDEX atab[3], pop(1)
83 34 0 0 VALUE_AT, s[t] = s[s[t]]
84 29 0 3 WRITE (char) s[t] to stdout, pop(1)
85 28 0 87 WRITE_RAWSTRING stab[87] to stdout

APPENDIX B. DISASSEMBLED PCODE FOR EXAMPLE PROGRAM 27

24 }

86 31 0 0 HALT

++-outer-++:
87 0 0 0 LOAD_ADDR, push &i
88 24 0 17 PUSH_LIT 17
89 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)
90 81 0 0 SHORTRET, pc = shortcall_reg

