
Low Complexity Network Synchronization Lior Shabtay and Adrian SegallDept$ of Computer Science/ Technion/ Israel Institute of TechnologyHaifa/ Israel 9:;;;email < liors=cs$technion$ac$il/ segall=cs$technionacilAbstract' Synchronizer is the best synchronizer known that workswith any type of synchronous model and any network topology$ This paCper presents three new synchronizers< ! / !! and "$ These synchronizersuse sparse covers in order to operate and have the following advantagesover synchronizer < EFG they are conceptually simpler/ as only one conCvergecast and one broadcast processes are performed along each clusterspanningCtree between each two consecutive pulses/ and no preferred linksare needed for interCcluster communication$ E:G synchronizer !! uses halfthe communication complexity of synchronizer / while retaining thetime complexity$ E9G synchronizer " uses half the time complexity ofsynchronizer / while retaining the communication complexity$ EIG sincethere is no need to elect preferred links between neighboring clusters/ theinitialization process of these synchronizers is more eJcient< it requiresonly OEjV j log jV jL jEjG messages$Key words(distributed algorithms3 networks3 synchronization3 sparse covers3communication and time complexities; IntroductionThis paper deals with distributed protocols in two network models= the syn#chronous model and the asynchronous model; In the asynchronous model3 nodesperform operations only upon receiving a message from some neighbor or fromthe outside world; At that time3 the node processes the message3 performs localcomputations3 and may send messages to some or all of its neighbors; All localactions are performed atomically;Messages sent by a node to any of its neighborsare received in a FIFO order within a Cnite undetermined time;The synchronous model assumes that all link delays are bounded by somequantity referred to as a time unit; Pulses are generated synchronously at allnodes in the network at time unit intervals; Messages are sent only at pulse ticks3and thus arrive at the destination node before the next pulse; Operations areperformed by a node only at the time of a pulse or when receiving a message;When a node receives a message3 it processes the message and performs localcomputations; At the time of a pulse3 the node may perform local computations Also to be presented on the workshop on distributed algorithms/ FNNIT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

and in addition& it may send messages to some or all of its neighbors1 All localactions are performed atomically1Synchronizers are tools for transforming protocols written for the synchronousmodel into protocols that run on an asynchronous network1 The synchronousprotocol will be referred to as the original protocol1 The asynchronous protocolcreated by the synchronizer generates a sequence of pulses at each node1 Thepulses occur asynchronously at di<erent nodes1 At each pulse& the nodes per=form the original=protocol pulse code and send messages which are identical tothe original=protocol messages1 In certain circumstances& slight changes in thepulse code and?or in messages are allowed @see ABCDE1The methodology of synchronizers was introduced in ABD& where three synchro=nizers were presentedF the synchronizer& with an overhead of O@jEjE in commu=nication complexity and O@BE in time complexity per pulse& the # synchronizerwith an overhead of O@jV jE in communication and O@DE in time complexity perpulse @when D is the diameter of the networkE& and the & synchronizer& whichenables trade=o< between the above complexities1In ABD& it is shown that synchronizer & achieves almost optimal tradeo< be=tween the time and communication complexities1 This is proved by showing lowerbounds of '@logk jV jE time and '@kjV jE communication on this tradeo<& givenI ! k ! jV j1 Later works have presented synchronizers with lower complexitiesdesignated for special casesF ABKD shows an optimal synchronizer for hypercubenetworksL AKD presents a synchronizer with polylogarithmic overhead that worksonly for synchronous protocols in which a node may send messages at a pulseonly if it has received messages sent at the former oneL ABMD discuss synchronizersfor bounded=delay networks1 Thus& synchronizer & remains the best synchronizerthat works for any synchronous protocol and any asynchronous network1In ABKD& the authors suggest a technique for creating synchronizers by usinggraph spanners1 given a t=spanner with m edges for a network N N @V,EE& thetime complexity of the created synchronizer is t and its communication com=plexity is t " m1 In AOD and APD O@logk jV jE=spanners with O@kjV jE edges arepresented& arguing that they can be used in order to create an eQcient synchro=nizer1 However& the communication complexity of the created synchronizers isO@kjV j logk jV jE& that is& O@logk jV jE times larger than that of synchronizer &1In a protocol created by combining a synchronous protocol with a synchro=nizer& a node i is said to be safe with respect to pulse@nE& if all original=protocolmessages sent by node i when performing pulse@nE have already been receivedby the respective neighbors1 In order for the node to know when they are safe&each node that receives an original=protocol message is required to send back anexplicit acknowledgment message1 Most synchronizers are based on the obser=vation that a node i can perform pulse@nE when all its neighbors are safe withrespect to pulse@n # BE1Given a parameter k& the partition algorithm that initializes & creates apartition of the network into clusters with cluster spanning=trees of hight Hp Nlogk jV j at the most1 The partition algorithm also elects a preferred link betweeneach two neighboring clusters1 The number of preferred links adds up to @k#BEjV jT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

at the most' The time complexity of the partition algorithm is O3jV j logk jV j45its communication complexity is O3kjV j 4'In order to synchronize each pulse5 # uses the following protocol; after thepulse is performed by the nodes5 SAFE messages are converged along the clusterspanningBtrees from the leaves to the leader node of each cluster' Then5 CLUSBTER SAFE messages are broadcast on the edges and preferred links of eachcluster tree' Then5 CLUSTER READY messages are converged along each clusBter tree5 and AWAKE messages are broadcast along each tree in order to triggerthe next pulse at the nodes'The time complexity of # is L logk jV j M N per pulse' This is due to thefact that between each two consecutive pulses5 two convergecast processes andtwo broadcast processes are performed along each of the cluster spanningBtrees5and that messages are also sent along the preferred links' The communicationcomplexity of # is L3jV j!N4MO3k!N4jV j messages per pulse5 since between eachtwo consecutive pulses5 four messages are sent along each cluster spanningBtreeedge and two messages are sent along each preferred link'In this paper we present three new synchronizers5 named $!5 $ 5 and %' Thesesynchronizers make use of a sparse cover PNLQ PRQ5 which is a collection of clusterssuch that each node is a member of at least one cluster 3see Sec' O4' The initialBization of these synchronizers is based on a cover creation algorithm presentedin PNLQ' When given a parameter O " k " jV j5 this initialization algorithm creBates clusters of radius O3logk jV j45 such that the average number of clusters eachnode participates in is k'Synchronizers $!5 $ and % are conceptually simpler than synchronizer #;between each two consecutive pulses5 they use only one convergecast of SAFEmessages and one broadcast of AWAKE messages along each cluster spanningBtree' No preferred links are needed for interBcluster communication'The fact that no preferred links should be elected enables the initializationprocess of $!5 $ and % be more eTcient than the initialization process of #'The communication complexity of a straightforward distributed implementationof the GV algorithm that is used for initializing synchronizers $!5 $ 5 and % isO3jV j 45 while the communication complexity of the partition algorithm thatinitializes # is O3kjV j 4' Furthermore5 in this paper we also present an improvedversion of the distributed GV algorithm5 with communication complexity ofO3jV j logk jV j M jEj4' The time complexity of the initialization algorithms disBcussed above is identical5 namely O3jV j logk jV j4'The time complexity of synchronizer $! is L logk jV j M O per pulse5 and itscommunication complexity is OkjV j per pulse' Both complexities are identical tothose of synchronizer #' The time complexity of synchronizer $ is L logk jV jM Nper pulse5 the same as the time complexity of synchronizer #' The communicaBtion complexity of $ is 3k M O4jV j per pulse5 which is half the communicationcomplexity of #' The time complexity of synchronizer % is O logk jV jMO per pulse5which is half the time complexity of #' The communication complexities of # and% are identical'T
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

 CoversIn a network N) *V"E+, a cluster is de0ned as a set of nodes S V , such thatthe graph induced by S *the nodes of S and the edges that connect them+ isconnected: A cover <=> of a network is a collection of clusters S) fS " S!" % % % " Smgsuch that Si """m Si) jV j: An example for such a cover is the set of jV j clustersfS " S!" % % % " SjV jg where the cluster Sv contains the node v and all its neighbors:Let S be a cluster and v" w % S two nodes in the cluster, distS *v" w+ isde0ned as the length of the shortest path in S between v and w: The diameDter of a cluster S, Diam*S+, is de0ned as maxv&w S*distS *v" w++: For a clusterS and a node v % S, Rad*v" S+ is de0ned as maxw S*distS*v" w++: The raDdius Rad*S+ of a cluster is de0ned as minv S *Rad*v" S++: The radius of a coverRad*S+ where S) fS " S!" % % %Smg is de0ned as maxi """m*Rad*Si++, the diamDeter of a cover Diam*S+ is de0ned as maxi """m*Diam*Si++: The volume of acover S) fS " S!" % % %Smg is de0ned as vol*S+) 2i" """mjSij: A cover T is saidto be a coarsening of a cover S, if for each cluster Si % S, there exists a clusterTj % T such that Si Tj :In <FG>, the author presents an algorithm named GV *Global Volume+ that,given a cover S of a network graph and an integer parameter z ' F, constructsa coarsening cover T that satis0es the following propertiesJF: vol*T + (jV j #)z:K: Rad*T + (z)Diam*S+ LRad*S+ (*Kz L F+)Rad*S+:In the sequel, we call the input cover clusters SDclusters, and the output coverclusters T Dclusters: The GV algorithm operates iteratively: At each iteration, oneSDcluster S$ is selected, and a new cluster T % T is formed by merging S$ withother SDclusters: The merging procedure itself is performed in iterations, wherein each iteration a new layer of SDclusters is selected and merged into T : A formaldescription of the algorithm is given in Table F:T * +while S ,) + doF: Select an arbitrary cluster S$ % SK: S * S - fS$gO K * S$P: Q * fSjS % S" S /K ,) +gG: T * K 0SQO S * S - QQ: if T 6 jV j)zjKj then K * T O goto P=: T * T 0 fTgTable %& Algorithm GVThe proof of correctness for GV is given in <FG>: Here we provide a sketch ofthis proof *for the proof of the Lemmas that appear in this section, see <FG>+JT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

Lemma$% The resulting T is a cover of the network2For each cluster T ! T + let K,T - denote the value of the set K when this clusteris completely formed and joins the cover ,line 8 in the algorithm-:Lemma&% For every T ! T 5 jT j # jV j zjK,T -j2Lemma'% For every T# T ! T 5 K,T - $K,T - ; %2Corollary-% vol,T - # jV j ! z2Now+ consider some iteration of the main loop+ starting with the selection ofa cluster S" ! S and ending with a new cluster T added to T : Suppose thatthe internal loop was executed for J iterations: Denote the initial set K by K",; S"-: Denote the sets T and K constructed at steps A and B of the iCth internaliteration+ i ' D+ by Ti and Ki respectively:Lemma.% For every E # i # J (D5 jKij ' jV ji z5 and strict inequality holdsfor i ' D2Corollary/% J # z2Lemma0% Rad,T - # Rad,S- F z)Diam,S- # ,Gz F D-) Rad,S-2 Synchronizer The Irst synchronizer we present+ 0 + possesses exactly the same time andcommunication complexities as synchronizer 1: The initialization phase of synCchronizer 0 uses the GV algorithm for creating a cover of the network+ tobe used later by the synchronizer: The input cover given to GV is the coverS ; fS # S## 2 2 2 # SjV jg such that Sv is a cluster that contains node v and all itsneighbors: The parameter given to the GV algorithm is z ; logk jV j+ where k isa parameter given at initialization time ,G # k # jV j-: Therefore+ the cover T +created by GV satisIes the followingND: Rad,T - # G logk jV jF D+ vol,T - # kjV j:G: T is a coarsening of S:All three predicates follow trivially from the properties of algorithm GV:Observe that for every node v+ there exists a cluster T ! T such that v andall its neighbors are in T : This derives from the fact that T is a coarsening ofS+ which means that there exists a cluster T ! T such that Sv , T :After GV is performed+ each node v ! V chooses the cluster that contains Sv,that was created by GV by combining Sv and other SCclusters- to be its homecluster: In the sequel+ we call the group of nodes that have selected a clusterT to be their home cluster as the tenants of T : In addition+ a spanning tree ofheight # G logk jV jF D is constructed for each cluster T ! T : Such a tree existsfor every cluster in T since Rad,T - # G logk jV j F D: In the sequel+ the root ofthe created spanning tree is referred to as the leader of the cluster:Synchronizer 0 uses two types of messagesN SAFE and AWAKE: Each mesCsage includes a parameter containing a name of a cluster leader: SynchronizerT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

 works as follows(after each pulse/ SAFE messages are converged along eachcluster spanning:tree from the leaves to the root; Each leaf node sends a SAFEmessage to its parent node as soon as it is safe; Each intermediate node sendsa SAFE message to its parent as soon as it is safe and has received a SAFEmessage from each of its children in the cluster spanning:tree; When the clusterleader receives a SAFE message from each of its children/ it initiates a broadcastof AWAKE messages(each node in the cluster sends an AWAKE message toeach of its children upon receiving an AWAKE message from its parent;Each node in the network may be a member in more than one clusterspanning:tree; Therefore/ SAFE and AWAKE messages sent along each spanning:tree contain the name of the cluster leader; The above protocol is performedindependently at each cluster spanning:tree; A node that receives an AWAKEmessage that includes the name of its home cluster leader/ performs the nextpulse; The correctness of synchronizer follows from the following arguments(All nodes in the network get to perform each pulse exactly once; This is dueto the fact that each node has selected exactly one home cluster; Each node performs each pulse only after receiving all messages sent to it atthe former pulse(each node performs each pulse upon receiving an AWAKEmessage from its parent in its home cluster/ that is/ only after all the nodesin its home cluster are safe; The nodes choose their home cluster such thatall neighbors of each node are members in its home cluster; Thus/ a nodeperforms a pulse only after all its neighbors are safe with respect to theformer pulse;The time complexity of is as follows(the convergecast of SAFE messagesalong each cluster spanning:tree takes C logk jV jDE periods of time; The broad:cast of AWAKE messages along the cluster spanning:trees takes C logk jV j D Eperiods of time; This adds up to F logk jV j D C per pulse; The communicationcomplexity of is at most CkjV j(the number of edges in all cluster spanning:trees is bounded by the volume of the cover/ which is kjV j at the most; OneSAFE and one AWAKE message is sent along each of these edges; Synchronizer The time and communication complexities of synchronizer are almost exactlyidentical to those of synchronizer #; In this section we present a synchronizer/named !/ that requires communication complexity of Jk D CKjV j/ which is halfthe communication complexity of # and ; The time complexity of ! is identicalto the time complexity of #;Synchronizer ! is based on the observation that there is no point in broad:casting the AWAKE messages to all nodes of each cluster/ since nodes that arenot tenants of a cluster Jthe cluster is not their home clusterK do not performthe pulse upon receiving the AWAKE message from their parent in this cluster;The initialization phase of synchronizer ! creates two trees for each cluster(JEK the cluster spanning:tree/ over which the SAFE messages are converged; JCKthe cluster tenants:tree/ over which the AWAKE messages are broadcast;T
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

In the sequel we show that the number of edges in all cluster tenants4trees isbounded by 6jV j7 and that the height of each cluster tenants4tree is bounded by6 logk jV j8 Therefore7 the communication complexity of ! is kjV j<6jV j messagesper pulse7 and the time complexity of ! is = logk jV j < >8Let us describe a version of GV that builds a cluster tenants4tree for each cre4ated T 4cluster8 The algorithmworks only for the input cover S D fS!$ S $ % % % $ SjV jgwhere Sv is a cluster that contains the node v and all its neighbors8 The code ofthe new version of GV is presented in Table 68T % &while S 'D & dof Constructing a new T 4cluster named T g>8 Select an arbitrary cluster Sv (S68 S % S) fSvgG K % Sv G T % Sv6a8 TenantsHT I % fvgG leaderHT I % vJ8 Q % fSjS (S$ S +K 'D &gJa8 For each Sw (Q doif Sw + TenantsHT I 'D & thenparentT HwI % a node picked from Sw + TenantsHT Ielsel % a node picked from Sw + TparentT HwI % lparentT HlI % a node picked from Sl + TenantsHT IJb8 TenantsHT I % TenantsHT I < fwjSw (Qg=8 T % K ,SQG S % S) QL8 if T 3 jV j!&zjKj then K % T G goto JM8 T % T , fTgTable %& Algorithm GV with cluster tenants4trees constructionThe correctness of step Ja which actually constructs the cluster tenants4treesfollows from the fact that at all times7 each node in T is either in TenantsHT Ior is a neighbor of a node that is in TenantsHT I8 From step Jb and =7 each nodeis a tenant of exactly one cluster8 From step Ja7 each node contributes 6 edgesto its cluster tenants4tree at the most8 Therefore7 the number of edges in allcluster4tenants is 6jV j at the most8Each execution of step Ja increases the height of the cluster tenants4tree by6 at the most7 since it connects each of the new tenant nodes to an old one via 6hops at the most8 The height of the initial tenants tree created in step 6a is P7 andstep Ja is performed logk jV j times at the most per cluster7 therefore the heightof each cluster tenants4tree is 6 logk jV j at the most8 The cluster spanning4tree7of height 6 logk jV j < > at the most7 is created for each cluster T by performinga BFS algorithm7 initiated by leaderHT I8T
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

 Synchronizer The synchronizer presented in this section. . requires communications complex5ity of 7kjV j per pulse. the same as synchronizer #8 The time complexity of is7 logk jV j: 7 per pulse. which is half the time complexity of #8Like with synchronizers $ and $!. the initialization phase of synchronizer uses the GV algorithm in order to create a cover of the network needed for theoperation of the synchronizer8 However. in this case the input cover given to theGV algorithm is diBerent8 In . the input cover given to the GV algorithm isbuilt of jEj clusters. where each two neighbors in the network form a cluster8 Inother words. the input cover S is fSv"wjEv(wF # Eg where Sv"w is a cluster thatcontains nodes v(w and the edge that connects them8Observe that DiamESF H RadESF H I8 Therefore. the cover T . created byapplying the GV algorithm on S. satisJes the following propertiesKI8 RadET F & logk jV j: I878 volET F & kjV j8Synchronizer works similarly to $ K it uses two types of messages. SAFEand AWAKE8 After each pulse. SAFE messages are converged along each clusterspanning5tree in the same way as done in $ 8 In each cluster. when the leaderreceives SAFE messages from each of its children in the cluster spanning5tree. itinitiates a broadcast of AWAKE messages along the cluster spanning tree8The diBerence between the protocols of $ and is in the timing of the pulseat each node8 In . each node performs the pulse only after receiving an AWAKEmessage from its parent on each of the cluster spanning5trees it belongs to8 Forexample. a node that belongs to three clusters. waits to receive three AWAKEmessages before performing the next pulse8As in $ and $!. the AWAKE and SAFE messages sent along the clusterspanning tree edges when performing contain the name of the cluster leader8In this way. a node that belongs to more than one cluster can distinguish betweenmessages sent over diBerent cluster spanning trees8The correctness of synchronizer follows from the following two argumentsK All nodes in the network get to perform each pulse exactly once8 This isproved by induction on the pulse number n8 The base is trivialK the clusterleaders initiate a broadcast of AWAKE messages along the cluster spanning5trees8 Eventually. each node receives an AWAKE message from its parent oneach of the cluster spanning5trees it belongs to and performs pulseERF8The induction step is proved as followsK assume that each node gets to per5form pulseEnF exactly once8 Since the convergecast of SAFE messages is per5formed independently over each cluster spanning5tree. each cluster leadereventually receives a SAFE message from each of its children and initiates abroadcast of AWAKE messages on its cluster spanning5tree8 Thus. each nodeeventually receives AWAKE from its parent on each of the cluster spanning5trees it belongs to8 When this happens. the node performs pulseEn : IF8T
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

 Each node performs each pulse only after receiving all messages sent to it atthe former pulse4 This argument is proved as follows7 assume8 in contradic9tion8 that when a node v performs pulse:n;<=8 an original9protocol messagesent to v from a neighbor w at pulse:n= is still on its way4 Since the cover Tis a coarsening of S8 there exists a cluster T " T such that Sv!w # T 4 Syn9chronizer % ensures that node v performs pulse:n;<= only after receiving anAWAKE message from its parent in the spanning tree of T 4 Therefore8 whenv performs pulse:n ; <=8 all nodes in T are already safe8 including w4 Thisis in contradiction to the assumption that there is still an original9protocolmessage sent at pulse:n= on its way from w to v4The time complexity of % is as follows7 the convergecast of SAFE messagesalong each cluster spanning9tree takes logk jV j;< periods of time4 The broadcastof AWAKE messages along the cluster spanning9trees takes logk jV j; < periodsof time4 This adds up to a time complexity of G logk jV j ; G per pulse4 Thecommunication complexity of % is at most GkjV j7 the number of edges in allcluster spanning9trees is bounded by the volume of the cover8 which is kjV j atthe most4 One SAFE and one AWAKE message is sent along each of these edges4 A Distributed Version of Algorithm GVIn this section we describe a distributed version of the GV algorithm8 that is usedin order to initialize the (8 (! and % synchronizers4 For clarity reasons8 we havetried to keep this implementation as close as possible to the partition algorithmused in order to initiate synchronizer)4 The time complexity of the distributedGV algorithm presented in this section is O:jV j log jV j=8 the same as the timecomplexity of the partition algorithm used in order to initialize synchronizer)4The communication complexity of this distributed GV algorithm is O:jV j!=4 Thisis k times better than the communication complexity of the partition algorithmof)8 which is O:kjV j!=4 The reason for the reduced communication complexityis that there is no need to elect preferred links4The initialization required by the distributed GV algorithm is as follows7a leader is selected for each S9cluster4 In addition8 a spanning tree is createdfor each S9cluster8 by using a BFS algorithm initiated by its leader4 We callthese leader nodes and spanning trees NS9leader nodesO and NS9spanning treesO8as opposed to the T 9leader nodes and the T 9spanning trees created by GV4When initializing (and (!8 S P fS + S!+ , , , + SjV jg8 where Sv is a clusterthat contains v and all its neighbors4 In this case8 the S9leader of Sv is v8 andthe S9spanning tree of Sv is rooted by v and contains the edges f:v+ w=jw is aneighbor of vg4 When initializing %8 S P fsv!wj:v+ w= " Eg4 In this case8 theS9leader of a cluster Sv!w is selected arbitrarily from fv+ wg4 The S9spanningtree is built of the edge :v+ w=4The algorithm starts with an execution of a leader election algorithm Q<<R8QGR4 The election of an S9leader and the creation of an S9spanning tree for eachS9cluster can be performed by this algorithm without any penalty in commu9nication or time complexities4 This stage is also used in order to create at eachT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

node v a list QListv that contains the names of the S-leaders of all S-clusters vbelongs to2 Again4 this is performed without penalty in communication or time2In the distributed GV algorithm4 T -clusters are built one by one2 Each time4a new T -cluster is built from remaining S-clusters <S-clusters which were notmerged into previously created clusters>2 This is done by selecting a T -leadernode and then creating the T -cluster from S-clusters in its neighborhood2 Theoperation of removing an S-cluster from the remaining S-clusters list <after ithad been used when building a T -cluster> is performed by removing the nameof the S-cluster leader from QListv for each node v in this S-cluster2The algorithm makes sure that the selected T -leader node is always a nodethat is a leader of some S-cluster2 The job of creating a T -cluster T arounda given T -leader node v is performed by a procedure named Cluster Creation4which operates in the following wayC Drst4 an S-cluster that is leaded by nodev is selected2 At the Drst iteration4 T contains this S-cluster4 and the spanningtree of T is selected to be the spanning tree of this S-cluster2Each of the following iterations of the Cluster Creation procedure is per-formed as followsC the leader of T initiates a broadcast of PULSE messagesalong the spanning tree of T 2 Each node v that receives the PULSE message4checks QListv2 If QListv is not empty4 all S-clusters whose leader names appearin QListv are merged into T 2 This is done by sending LAYER messages alongthe S-spanning trees of the S-clusters2 The LAYER messages contain the nameof the S-cluster along which they are sent2A node w that is not in T and receives a LAYER<S> message4 joins T 2Assuming this LAYER<S> message is sent from a neighbor u4 w marks u as itsparent in the spanning tree of T 2 Node w also removes S from QListw 4 sendsLAYER<S> messages further along the spanning tree of S4 waits for an ACK <S>or an ACK!<S> message as an acknowledgement for each of the LAYER<S>messages it has sent4 and then sends back an ACK!<S> message4 meaning thatu is the parent of w in the spanning tree of T 2A node w that is in T and receives a LAYER<S> message4 checks whetherthe name of the leader of S is in QListw2 If not4 the LAYER<S> message isimmediately acknowledged with an ACK <S> message2 If S appears in QListw 4S is removed from QListw 4 LAYER<S> messages are sent further along thespanning tree of S and w waits for ACK <S> or ACK!<S> as an acknowledgementfor each LAYER<S> message it has sent2 Then w sends back ACK <S>2Each node that has sent LAYER messages upon receiving a PULSE message4waits to receive ACK for each LAYER message it has sent4 and then sends aCOUNT message to its parent in the spanning tree of T 2 The COUNT messagesare converged along the spanning tree of T 2 The COUNT message sent by eachnode contains a parameter which is the number of the nodes in the subtreerooted by it4 the same is true for ACK! messages as well2 When the leader ofT receives COUNT messages from each of its children4 it decides whether toinitiate another iteration or to initiate a search for another T -cluster leader2This concludes the description of the Cluster Creation procedure process2 Wenow describe the way in which the GV algorithm uses this procedure in orderT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

to create the cover T (Recall that the distributed GV algorithm begins with an execution of a leaderelection algorithm(The leader election algorithm 9::;< 9=; ends at an elected>core? edge(At least one of the nodes at the two ends of this edge must bea leader of an SAcluster(We will call this node vinit(Node vinit initiates anexecution of the Cluster Creation procedure(The procedure execution ends atnode vinit< after creating a T Acluster led by it(At this point< node vinit calls theSearch For Leader procedure< which searches for a node that will be a leader ofa new T Acluster(This node calls Cluster Creation which creates a cluster aroundit< then it calls Search For Leader< and so on(The Search For Leader procedure works as followsK it is initiated by the leaderof a T Acluster T that has just been formed(This leader node initiates a broadcastof TEST messages along the cluster spanningAtree(Then< a convergecast processof CANDIDATE messages is performed< where each node sends to its parent amessage telling whether one of the nodes in its subAtree is a member of an SAcluster that has not yet been joined to a T Acluster(If such a node is found< thenew T Acluster leader will be the leader of the SAcluster found(If not< the centerof activity backtracks to the cluster from which the leader of T was elected< andthe above procedure is repeated there(In the sequel< we denote the cluster fromwhich the leader of a T Acluster T was elected as the parent cluster of T (Noticethat the parentAchild relation between the clusters creates a DFS tree(The time complexity of the leader election algorithm in 9::; is OQjV j log jV jR(The time complexity of the leader election algorithm in 9=; OQjV jR(The commuAnication complexity is OQjV j log jV jS jEjR in both cases(The Cluster Creation procedure creates clusters of height OQlogk jV jR at themost(Therefore< at most OQlogk jV jR iterations are needed in order to createeach cluster(In each T Acluster T < PULSE and COUNT messages are sent onlyby nodes in KQT R QSee Sec(=R(Recall that &T T KQT R # jV j(This means thatat most jV j logk jV j PULSE and COUNT messages are sent during the wholealgorithm execution(The number of LAYER and ACK messages sent along eachedge in each direction equals to the number of SAcluster spanningAtrees to whichthis edge belongs(When initializing ' or '!< each edge belongs to exactly twoSAcluster spanning trees(When initializing (< each edge belongs to exactly oneSAcluster spanning tree(Therefore< OQjEjR LAYER and ACK messages are sentduring the whole algorithm execution(Thus< the communication complexity ofthe Cluster Creation procedure is OQjV j logk jV jS jEjR(Now< consider a T Acluster with c nodes< the height of this cluster spanningtree is at most OQlogk cR(Hence< the total amount of time spent in forming thiscluster is OQc logk cR(Summing up for all T Aclusters gives OQjV j logk jV jR [theoverall time complexity of the invocations of Cluster Creation(The Search For Leader procedure traverses the already created clusters ina DFS order< trying to \nd a free node which would be the leader node of anew cluster(Each time a cluster is traversed in search for a new candidate isreferred to as a move Qsee 9:;R(A move involves a broadcast of TEST mesAsages and a convergecast of CANDIDATE messages(It also involves a string ofT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

LEADER messages from the cluster leader to the elected new node5 or a stringof RETREAT messages to the leader of the cluster that has elected the currentleader 8its parent in the clusters DFS tree<= Thus5 for both kind of clusters5Cmove @ O8jV j< and Tmove @ O8logk jV j<=Observe that each node v may be a leader of at most one T Dcluster= Thisis due to the fact that the Cluster Creation procedure initiated by a node vperforms at least one iteration per cluster5 ensuring that QListv is empty= Eachcluster contributes two moves to the execution of the algorithm5 one is when theleader of the cluster is elected5 and one is when the cluster is traversed and no newleader is found= There are at most O8jV j< clusters in the network and thereforethe total communication complexity of all invocations of Search For Leader isO8jV j <5 and the total time complexity is O8jV j logk jV j<=The total communication complexity of the distributed GV algorithm is5thus5 O8jV j <= The total time complexity of the distributed GV algorithm isO8jV j logk jV j<= The process of creating the clusterDtenants tree needed by synDchronizer * adds JjV j to the communication and time complexities of the disDtributed GV= This is straightforward from the scheme in Table J= !" An Improved Distributed Version of the GV AlgorithmSince the Preferred Link Election procedure used in the partition algorithm of +is not needed by the distributed GV algorithm5 the communication complexityof the Search For Leader procedure5 which is O8jV j < turns out to be dominant=The reason for the large communication complexity of the Search For Leaderprocedure is that a cluster with O8jV j< nodes may execute a move of theSearch For Leader procedure O8jV j< times=This section presents a distributed GV algorithm with communication comDplexity O8jV j log jV j L jEj< and time complexity O8jV j logk jV j<= The improveDment in communication complexity is achieved by reducing the communicationcomplexity of each move of the Search For Leader procedure to O8logk jV j<=The idea is to let the Cluster Creation procedure maintain a data structureby which the leader of each T Dcluster can decide whether there are nodes inthis T Dcluster that are members of remaining SDclusters5 and also tells whichis the way from that leader to such a node 8if exists<= In the sequel5 we namesuch nodes %potential nodes-= With such a data structure5 it is obvious that everymove of the Search For Leader procedure takes O8logk jV j< messages=In order to create this data structure5 each node in the network selects aninspector cluster5 which will be the cluster that is responsible to check whetherthis node is a potential node or not= The inspector cluster of a node v is thePrst T Dcluster to which node v joins during the execution of the distributed GValgorithm= The nodes that have selected a cluster T to be their inspector arenamed the %subordinates- of T =Each node v maintains one Rag fv%T for each cluster T it participates in= TheRag fv%T says whether there is a potential node that is a subordinate of T inthe subDtree of the spanning tree of T 5 rooted by v= After the execution of theCluster Creation procedure that creates a T Dcluster T 5 an additional iterationT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

of broadcast and convergecast of messages along the created cluster spanningtree is performed3 During this iteration the values of fv!T are set for all nodesv T 3 Observe that this additional iteration does not change the order of timeor communication complexity of the Cluster Creation procedure3The new Cluster Creation procedure works as follows< like in the old Clus=ter Creation procedure> when an S=cluster S joins the created T =cluster T > thenodes in S remove the name of the leader of S from their QList variable3 In thenew Cluster Creation procedure> when a node w sets QListw # $> it checks tosee whether this eAects the value of its fw!T Bag> where T is its inspector clus=ter3 If not> the Cluster Creation procedure continues3 If fw!T has been changed>node w sends a FLAG CHANGEDJT K message to its parent u in the spanningtree of T and waits for a FLAG CHANGED ACKJT K message from u3 Whennode u receives the FLAG CHANGEDJT K message from w> it updates fu!T JwK>which is a variable that contains the estimation at u for the value of fw!T 3 Thennode u checks whether the value of fu!T should be changed3 If not> u sendsa FLAG CHANGED ACKJT K message to w3 If fu!T should be changed> nodeu changes it and sends a FLAG CHANGEDJT K message to its parent in thespanning tree of T and so on3When performing Search For Leader> each move starts at a leader node l ofa T =cluster T 3 Node l checks fl!T to see whether there are potential nodes thatare subordinates of T 3 If this is the case> the fv!T JwK Bags will lead from l to apotential node using OJlogk jV jK messages3 If not> RETREAT messages are sentto the leader of the cluster that has selected l> this costs OJlogk jV jK messagesat the most3Each node v performs QListv # $ exactly once during the whole execu=tion of the GV algorithm> causing a string of OJlogk jV jK FLAG CHANGEDmessages at the most and OJlogk jV jK FLAG CHANGED ACK messages at themost3 Therefore> we have added OJjV j logk jV jK messages to the communicationcomplexity of the Cluster Creation procedure> and the same amount to its timecomplexity3 Hence> the communication complexity of the improved distributedGV algorithm is OJjV j log jV jQ jEjK and its time complexity is OJjV j logk jV jK3 !" Other Known Distributed Cover4Construction AlgorithmsTwo types of cover construction algorithms are discussed in the literature< JRKalgorithms that construct covers while minimizing their global volume Jfor ex=ample> the GV algorithmK3 JTK algorithms that construct covers while minimizingthe maximumnode degree> which is the maximum over the nodes of the numberof clusters in which a node participates3Algorithms of the second type are discussed in URVW> UXW> UYW> URTW> UZW> U[W3Given a parameter z and a cover S> these algorithms construct a coarseningcover T that satis\es the following properties< the maximumnode degree degJT Kis OJzjV j 'zK> volJT K] OJzjV j ! 'zK> RadJT K] OJz & RadJSKK3 Setting z]logk jV j> we gain< volJT K] OJkjV j logk jV jK> RadJT K] OJlogk jV j &RadJSKK3Observe that the volume of the created cover T is OJlogk jV jK times thevolume of the cover constructed when using the GV algorithm> and that there isT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

no tradeo' between the radius of the created clusters and the volume of the cover3Therefore5 using one of these cover construction algorithms in order to initiate 5 ! or !5 would cause the communication complexity of the synchronizer to beO;logk jV j< times larger than that of $5 and would eliminate the tradeo' betweenthe synchronizer time and communication complexities3Thus5 only cover construction algorithms of type ;=< are useful for our pur>pose3 A distributed synchronous algorithm of this type is presented in @AB3 How>ever5 the algorithm presented in Sec3 E3= is better suited for our purpose thanthe algorithm presented in @AB since it creates clusters of smaller radius and sinceit has lower communication complexity3 Coping with Apparent ShortcomingsThe bit complexity of a distributed protocol is deFned as the worst case totalnumber of bits in all messages sent by the nodes in V during an execution ofthe protocol3 The bit complexity per pulse of 5 ! and ! is larger than thebit complexity per pulse of $3 This is due to the fact that the AWAKE andSAFE messages sent along each cluster spanning tree when executing 5 !and ! contain the identity of the cluster leader5 that occupies log jV j bits3 Themessages sent by the synchronization protocol of $ are all O;=< in length3Usually when computing the communication complexity of a distributed pro>tocol5 messages that are O;logk jV j< bits long are assumed to cost exactly thesame as messages that are O;=< bits long3 This is reasonable since even for verylarge networks5 log jV j bits are much less than the number of bits appended toeach message as a data>link control header5 CRC5 etc3However5 it is easy to change the synchronization protocols of 5 ! and !to send only messages that are O;=< bits longO observe that the distributed GValgorithm described in Sec3 E ensures that the edges that form the spanning treeof a T >cluster T are all edges of the spanning trees of the S>clusters that formT 3 The GV algorithm also ensures that an S>cluster that is used when buildinga T >cluster T is not used when building any other T >cluster3 When initializing!5 each edge is a member of exactly one S>cluster3 Thus5 each edge is a memberof at most one T >cluster spanning tree3 Therefore5 there is no need to send anykind of information in the AWAKE and SAFE messagesO the T >cluster to whicheach such message applies can be extracted at the receiving node from the edgefrom which the message was received3When initializing or !5 each edge belongs to at most two S>cluster span>ning trees5 and therefore5 to at most two T >cluster spanning trees3 Thus5 onebit of information is enough for distinguishing between messages that apply todi'erent T >clusters3The amount of memory needed by the synchronization protocols of 5 !and ! at each node depends on the number of links connected to the node3 At anode with d links5 this amount of memory is O;d log jV j<5 as O;log jV j< bits areneeded to store the names of the ;at most two< T >cluster spanning trees eachedge participates in3 This is larger than the O;d< amount of memory needed forT
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

the synchronization protocol of at a similar node1 However5 O6log jV j8 bitsper link is still considered as a reasonable amount of memory1 This amount ofmemory is much less than the amount of memory needed anyway in order toensure correct simulation of the synchronous model 6see =>?@5 =>A@5 =>B@5 =>C@5 =>D@81 AcknowledgmentsThe authors wish to thank Hagit Attiya for helpful discussions1References ! B! Awerbuch+ Complexity Of Network Synchronization+ Journal of the Associationfor Computing Machinery+ Vol! <=+ No! ?+ October ABC+ pp! BD?EB=<!=! B! Awerbuch+ Optimal Distributed Algorithms of Minimum Weight Spanning Tree@Counting@ Leader Election and Related Problems+ STOC ABH+ pp! =<DE=?D!<! B! Awerbuch+ B! Berger+ L! Cowen and D! Peleg+ Fast Network Decomposition+PODC AA=!?! I! Althofer+ G! Das+ D! Dobkin and D! Joseph+ Generating sparse spanners forweighted graphs+ =nd Scandinavian Workshop on Algorithm Theory AAD+ =RE<H!C! B! Awerbuch and D! Peleg+ Network Synchronization with Polylogarithmic OverHhead+ < st Symposium on Foundations of Computer Science AAD+ pp! C ?EC==!R! B! Awerbuch and D! Peleg+ Sparse Partitions+ < st FOCS+ AAD!H! B! Awerbuch and D! Peleg+ EIcient Distributed Construction of Sparse Covers+CSADE H+ The Weizmann Institute+ July AAD!B! B! Awerbuch+ B! PattEShamir+ D! Peleg and M! Saks+ Adapting to AsynchronousDynamic Networks+ Proc! =?th ACM STOC+ AA=+ pages CCHECHD!A! D! Peleg and A! SchaUer+ Graph Spanners+ J! of Graph Theory <+ ABA+ AAE R! D! C!T! Chou+ I! Cidon+ I!S! Gopal and S! Zaks+ SynchronizingAsynchronous BoundedDelay Networks+ IEEE Transactions on communications+ Vol! <B+ No! =+ February AAD+ ??E ?H! ! R! G! Gallager+ P! A! Humblet and P! M! Spira+ A Distributed Algorithm forMinimumHWeight Spanning Trees+ ACM Transactions on Programming Languagesand Systems C+ AB<+ RREHH! =! N! Linial and M! Saks+ Decomposing Graphs into Regions of Small Diameter+ACMZSIAM symp! on Discrete Algorithms+ AA pages <=DE<<D! <! K!B! Lakshmanan and K! Thulasiraman+ On The Use Of Synchronizers For AsynHchronous Communication Networks+ =nd WDAG+ Amsterdam+ July ABH! ?! D! Peleg+ Sparse Graph Partitions+ CSBAED + The Weizmann Institute+ Feb! ABA! C! D! Peleg and J!D! Ullman+ An Optimal Synchronizer for the Hypercube+ SIAMJournal on computing+ Vol B+ No! ?+ pp! H?DEH?H+ August ABA! R! L! Shabtay and A! Segall+ Active and Passive Synchronizers+ TREHDR+ December AA + Computer Science Department+ Technion IIT+ submitted to NETWORKS! H! L! Shabtay and A! Segall+ Message Delaying Synchronizers+ Cth WDAG+ Delphi+October AA ! B! L! Shabtay and A! Segall+ A Synchronizer with Low Memory Overhead+ ?th InEternational Conference on Distributed Computing Systems+ Poznan pp! =CDE=CH! A! L! Shabtay and A! Segall+ On the Memory Overhead of Synchronizers+ LPCR ReEport]A< <+ May AA<+ Computer Science Department+ Technion IIT!T
ec

h
n
io

n
 -

 C
o
m

p
u
te

r
S

ci
en

ce
 D

ep
ar

tm
en

t
-

T
ec

h
n
ic

al
 R

ep
o
rt

L

P
C

R
9
4
1
0
 -

 1
9
9
4

ThisarticlewasprocessedusingtheL aTE XmacropackagewithLLNCSstyle

Technion - Computer Science Department - Technical Report LPCR9410 - 1994

