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vertex if at least one of its coordinates is in
{1,m}, and that the vertex y is antipodal to =
if 2; 4+ y; = m+ 1 for every ¢. The following is
thus a special case of Tucker’s lemma:

Lemma 3.7 Let

f be a vertex coloring of C = C(m,k) with
colors from {—k,...,—1,1,...,k} such that if
x 18 a boundary vertex and y is antipodal to
z, then f(y) = —f(z). Then there exist two
adjacent vertices u,u’ with f(u') = —f(u).

To derive lemma 3.5 we argue as follows:
Define a graph C on the vertex set {0,...,m+
1}* and the same adjacency relationship as C,
viz. z is adjacent to z + e for every e € {0,1}*.
Lemma 3.7 is to be applied to C, with the
understanding that being a boundary vertex
means having a coordinate which equals ei-
ther 0 or m + 1, and that vertices z and y are
antipodal in C if 2; + y; = m + 1 for all <.
Now suppose we are given a vertex coloring of
C with colors in {1,...,k}. A coloring of C
by {=k,...,—=1,1,...,k} is induced as follows:
For a boundary vertex z of C let j be the first
index for which #; € {0,m+ 1}. If z; = 0,
color z by —j, and if z; = m + 1, color it j.
Now each vertex u withno Q0 or m+ 1 is alsoa
vertex of C' and thus has a color 7; if there is a
path consisting of j-colored vertices connect-
ing u to the set {z : z; = 0} then recolor u by
—7, otherwise u’s color remains unchanged.

Obviously, there cannot be two adjacent
vertices colored j and -7, because the rule
for sign change calls for replacing the j by —7.
Lemma 3.7 may be invoked now to conclude
that in this coloring of C there are two antipo-
dal vertices whose colors do not sum to zero.
Therefore some boundary vertex must have
been recolored in the above recoloring process,
which means that for some 1 < 7 < d there is
a path of 7 colored vertices in €' connecting
a vertex with z; = 1 to one with z; = m, as
required. |

Keeping the dimension & fixed and letting m
tend to infinity, the following geometric theo-
rem is derived:
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Corollary 3.8 Let the k—dimensional cube
be covered by k closed sets. Then there is
a connected component of one of these setls
which intersects with two opposite facets of the
cube.

It would be reasonable to assume that this
result is known to geometers/topologists, but
we could not find it in the literature. If the
closed sets are also assumed to be homotopi-
cally trivial, this corollary follows from the
concept of category for topological spaces (cf.

[Sp]).

4 A fast randomized dis-
tributed algorithm for low
diameter decompositions

4.1 The algorithm

We would like to replace the sequential algo-
rithm of section 2 by a fast distributed one.
The sequential algorithm constructs the blocks
iteratively, one at a time. The time that the
algorithm takes is O(A#(n)) where t(n) is the
worst case time for one iteration. In the algo-
rithm as described t(n) could be linear in n.
In this section we show how to use random-
ization to replace the serial algorithm for the
construction of a single block by a parallel dis-
tributed one which achieves the same trade-off
as the serial algorithm between weak diameter
and A. The time to construct one block is re-
duced to O(log D) where D is the weak diame-
ter, and thus we achieve total running time of
O(DA). In particular, when we balance D and
A, we produce a O(logn)-decomposition with
weak diameter O(logn) that runs in O(log? )
time.

To construct a single block quickly, we’d
like to parallelize the selection of safe radii.
However, if we allow many vertices to choose
a safe radius simultaneously the balls around
the vertices may overlap significantly. In that
case, there is no longer an obvious criterion for
deciding which vertices are to be placed in the



block in such a way that the resulting block
is guaranteed both to have small weak diam-
eter and to contain a substantial fraction of
the vertices. It is this difficulty that we must
resolve.

We make the usual assumption that each
vertex & has a unique integer I D,. Of course,
if such ID’s are not provided then each vertex
can select an I D uniformly at random from,
for example, {1,2,...,n%} which guarantees that
the ID’s are unique with high probability; the
algorithm can be modified to work under this
assumption.

The algorithm for selecting a block out of a
graph G, is called Construct_Block. First each
vertex y selects an integer radius 7, at random
(according to a distribution (given below) that
is approximately geometric). It then broad-
casts (IDy,ry) to all vertices that are within
distance ry of it. After collecting all such mes-
sages from other vertices, each vertex y selects
the vertex C(y) of highest I.D from among the
vertices whose broadcast it received in the first
round (including itself), and joins the current
block if d(y, C(y)) < r¢(y) (note that it is nec-
essarily the case that d(y, C(y)) < ro(y))-

The distribution by which each vertex z se-
lects its radius r, is a truncated geometric dis-
tribution, which is defined in terms of two pa-
rameters, p and B:

Pr(rz = j) = p'(1- p)
forj=0,...,B—1,and
Pr(r, = B) = pB.

While the above algorithm is conceptually
quite simple, there are some subtleties in-
volved in implementing the above algorithm
efficiently in an asynchronous distributed net-
work, i.e., accomplishing the broadcast in such
a way that each vertex knows when it has re-
ceived all the broadcasts that it will get and
can thus select C(y). This can be done using
standard synchronization techniques; which
are discussed in the final subsection of this sec-
tion.
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4.2 Proof of correctness

The key properties of this algorithm are sum-
marized by:

Lemma 4.1 Suppose Construct_Block is ap-
plied to a graph G with at most n vertices. Let
S be the set of vertices comprising the block
selected. Then:

1. The set of selected vertices has weak di-
ameter at most 2B.

2. For each vertex y of G, the probability that
it belongs to S is at least p(1 — pB)».

If we apply Construct_Block iteratively to
decompose the entire graph (using the same
values of p and B at each iteration), then the
first part of the lemma guarantees that the
weak diameter of the resulting decomposition
is at most 2B. The second part of the lemma
implies that if ¢ = p(1—p?B)™ then for each ver-
tex z, the probability that  is not assigned to
one of the first ¢ blocks is at most (1 —¢)* and
thus the probability that some vertex is unas-
signed after ¢ iterations is at most n(1 ~ q)*.
By selecting B to be loi ;Hi‘“ & where w is any
function tending to infinity with n, it is easily
verified that ¢ = p(1 + o(1)) where the lit-
tle oh term depends only on the choice of w.
Thus with high probability, the number of it-
erations (and hence the number of colors) does
not exceed (14 0(1)) lo =y Lhe result is
a A-decomposition with diameter D where the
expressions for A and D in terms of p and »
are essentially the same as obtained for the se-
quential algorithm, and therefore the trade-off
is the same.

It remains to prove the lemma. The first
part of the lemma follows easily from:

Claim. For each connected subset T of §,
C(y) is the same vertex z for all y € T'.

By the claim, any two vertices in T are at
distance at most B from 2 and thus at most
2B from each other.

We prove the claim by contradiction; if it
is false then there are two adjacent vertices
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y and z belonging to S with C(y) # C(2).
Without loss of generality, the ID of C(y) ex-
ceeds that of C(z). By the definition of §,
y is in S implies r¢(y) > d(C(y),y). Since y
and z are neighbors, r¢(,) > d(C(y),z) and
thus z received the broadcast sent by C(y) in
the first round. This contradicts the fact that
C(z) is the vertex of highest ID whose broad-
cast reached z.

We now proceed to the proof of the second
part of the lemma. We fix a vertex y and esti-
mate the probability that it is assigned to S.
We can bound this probability as follows:

Pr(ye $)2>

Y. Pr(yeS|Cly) = 2)Pr(C(y) = 2)
z|d(z,y)<B

For a given vertex z, define the following
three events:
D,:r,>d(z,y)
E,:r,>d(zy)
F,: For every vertex w with ID
higher than z, 7o) < d(w,y).

Then for z such that d(z,y) < B we can
rewrite Pr(y € S|C(y) = z) as:

Pr(E, A F,|D, A F,)
= Pr(E,ANF,)/Pr(D, A F,)
= Pr(E,)/Pr(D,)
=D

where the first equality follows from the fact
that D, implies E,, the second equality fol-
lows from the fact that F, is independent of
both D, and FE,, and the third follows from
the definition of the distribution on selected
radii which implies that Pr(E,) = pHavtl
and Pr(D,) = p4=¥). Thus,

PriyeS)>p Y, Pr(Cly)=2)

z|d(z,y)<B
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> pPr(d(C(y),y) < B)
> pPr(r, # B,Vz)
> p(1 - p®)™.

4.3 Implementation details

Implementing the above algorithm requires
that each vertex y send (IDy,ry) to every ver-
tex z that is within distance r, of y and also
that each vertex y be able to detect that it has
received all such messages that are intended
for it (so that it can correctly select C(y). Be-
low we sketch how to use a standard synchro-
nization technique to achieve this. The result-
ing algorithm has the disadvantage that it re-
quires that nodes send very long messages. We
will then indicate how to modify the algorithm
to eliminate this disadvantage.

To synchronize the network we require that
each node proceed in a sequence of communi-
cation steps. During the step 7, the node sends
one message to each of its neighbors and re-
ceives one message from each of its neighbors.
The node can not send out any step 7+ 1 mes-
sages until it has sent and received all of its
step ¢ messages. Notice that not all nodes will
begin step 1 at the same time, and, indeed, a
node may not begin step 1 until after it has re-
ceived some step 1 message from another node.
However, this method ensures that two neigh-
boring nodes are never more than one step
apart.

The algorithm works by having each node y
build a sequence of sets S[t],, for 0 < ¢ < B,
where S[7], consists of all pairs (ID,,r;) for
nodes z for which d(z,y) = ¢ < r,. These
sets are constructed in B steps, with the set
S[i]y being constructed during the i* step of
the algorithm. Before step 1, S[0], consists of
the singleton (ID,,r,). Having constructed
set S[i — 1], prior to step ¢, node y defines
T[i]y to be the subset of S[i — 1], consisting of
those pairs (I Dy, r;) with r, > i and sends the
set T[i]y to each of its neighbors during step
i. Once it has received T[i], from each of its
neighbors z, it defines S[i], to be the union of



T[i], over all its neighbors z, minus the union
of S[j], over all j < i. It is easy to show by
induction that the sets S[i], are as required.
After B steps, the node then selects C(y) to
be the node of maximum I'D among all of the
sets Si)y.

The drawback to this algorithm is that the
sets T[i), transmitted in step i can grow very
large, requiring very large messages. One way
to reduce the message size is to realize that if
two pairs (IDy,7;) and (ID,,,7,,) are both in
S[i—1]y and r; = 7y, then y need only put the
one with the larger ID (say ID,) in T[i — 1],.
Thus at each step, the message sent by a node
contains at most B pairs, one for each possible
value of r,. It can be shown easily by induc-
tion that the maximum element in the union
of S[j]y over j < 4 in the modified algorithm
is the same as in the unmodified algorithm.

Finally, the messages can be shortened fur-
ther by modifying the algorithm as follows.
At any time, node y remembers only the pair
(IDg,ry) for which ID, is maximum among
all pairs that it has received thus far. At step
t, the node sends this pair to each of its neigh-
bors if r, > 4, otherwise it sends a null mes-
sage to its neighbors. The node C(y) is then
the node stored after step B.

This algorithm does not produce the same
result as the algorithms presented above, i.e.,
C(y) is not necessarily the vertex of maximum
ID such that rg(,) > d(C(y),y). Instead,
C(y) is the vertex of maximum ID such that
there is a path of length at most rg(,) from
C(y) to y such that for each vertex w on the
path, C(y) is the vertex of highest ID in the
ball of radius d(w, C(y)) around w. The proof
of lemma 4.1 can be easily modified to work
for this definition of C(y).
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