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The semi-matching problem
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e each client needs 1 server (dp;(u) =1 for all uw € U)

clients

e all servers should have =~ equal "load" (dp;(v)),
that is we want to minimize the following cost function:

S (dM(vz)—l-l) (or S 2,(0) )

veV veV
(the first is the "total completion time" interpretation)
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Key definition (of non-swappable)

a semi-matching M is non-swappable
if for all paths vuw, vu € M, uvw € E\ M: dy;(v) —dpy(w) <1

dy(v) =2
V O

dy(w) =1

when dy;(v) — dys;(w) > 1 then vuw is called bad path !

Main theorem

a non-swappable semi-matching M is a 2 (or 3) - approximation of
the minimum cost semi-matching



Sketch of the proof of the main theorem

du(v) =3 du(?) =2 du(?) =1 dy(w) =0
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e M - non-swappable semi-matching
e N1 - after swapping "vyellow" paths

o cost(M) — cost(Mq) = 2(dp(v) —dy(w) — 1) <2(k—1) <2k
where k is the number of yellow paths

e M, My, M»>, ..., M* - optimal semi-matching
o cost(M) — cost(M™*) < 2|U|, |U| < cost(M*), cost(M) < 3cost(M™)
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What are "long yellow paths" 7
e M - input semi-matching, M* - optimal semi-matching
e we define a digraph D with :
V(D)=YV
(u,v) € E(D) <= {u,a} € M and {a,v} € M* for a € U

e fact: D can be decomposed into arc-disjoint open trails

e these trails correspond to "long yellow paths" ...



Our main algorithm (for small A(V))
e in a distributed/synchronous model of computation

e take arbitrary semimatching M and make it non-swappable

e it must be done very carefully, because...
O o O O O

N1/

bad paths

e our algorithm is working in O(A(V)®)-rounds

e it computes 2 (or 3) -approximation of semi-matching problem
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Our main algorithm (for small A(V))

Procedure SemiMatch(G = (V,U, E))

1. Yu € U pick an arbitrary edge e,
incident to w and let M =,y eu-
2. fork=0to A -2
for : =0 to 2A

(@) Vvevi(v) = du(v)
Vi=o,..a Lt = {v € V|I(v) =t}
(b) X = Badjnq(Vag+1, Vi)
(c) S=FEnds(X), Sc=V\S
(d) M=Ma X
(e) for j =0 to 2A°
— Y =, Badina(Li N S, Li—1 N S€)

— S=SUEnds(Y) \ Starts(Y)
Se=V\S

— M=M®Y
3. return M

Vi, = {v eV : dy(v) = k}
Vg i={v eV i dy(v) >z}

Bad(A,B) - a set of bad
paths from set A to B

Bad,;,;(A, B) - a procedure
finding "independent" set of
pahts in Bad(A, B)



Our main algorithm (for small A(V))

e in k-th iteration of the main loop
we eliminate bad paths from Bad(Vsg41, V) -

v
il Vi=H{v eV :dy(v) =k}
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Our main algorithm (for small A(V))

e we call Badmd(V>k+1,Vk)
to find independent paths and "swap'" them ...
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Our main algorithm (for small A(V))

o ... after O(A(V)) -iterations Bad(Vsgt1, V) =0

/—Y\L Vi={v eV :dy(v) =k}
Va(V) Vg2 Vi Vo
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The algorithm for large A(V)

e the reduction to MSSC (Min Sum Set Cover) problem
on a hipergraph H = (V(H),E(H)), n = |V(H)|

e MSSC problem: find a bijection h: V(H) — {1,...,n}
to minimize the function

costprggco(h) = Z min{h(v) : v € e}
ecE(H)

e for i :=1 to n do:
— find a vertex v with the largest dy(v)

— h(v) := 1, remove from H all hyper-edges containing v

e greedy algorithm finds 4 -approximation of MSSC problem:
U. Feige, L. Lovasz, P. Tetali
Approximating Min Sum Set Cover
Algorithmica 40(4), (2004)
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The algorithm for large A(V)

e definition: g-matching M is a set of edges such that
forall v eV dy(w) <gand forall u e U dy(u) <1

e we define a hipergraph H as follows:
V(H) - a set of all g-matchings in G
E(H) =U

e note that forve V(H) and ee E(V):
v € e <= that ¢-matching "v" matches a vertex "e" from U
dy(v) = size of g-matching "v"

e while U is not empty

— find a maximal ¢g-matching M
(and assign to its edges the next number)

— remove all vertices from U matched by M
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The algorithm for large A(V)

g(u) (= 1) — the number of the g—matching incident to u

costyrsso(M) = D glu) = >

{ dpr(v),dpr(v) < gq
uelU veV

543, (0), dar(v) > g

e it works only for special graphs !
when there exists an optimal semi-matching M*

s.t. Vyevdy+(v) > ¢
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The algorithm for large A(V)

e let (G satisfies:
o(V)>A(V)/a and A(U) <b; a,b -const

e there exists an optimal semi-matching M*
With Ve dy+(v) > A(V)/(ab)

e the greedy algorithm with ¢ := A(V)/(ab)
finds 36-approx of semi-matching problem,
in O(ab?) -rounds
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Open Problems

1. const -approx of the semi-matching problem for general graphs
(or when A(U) is const.)

2. PTAS, that is (1 4+ ¢) -approx, in O(A(V)O(1/€)) —rounds

3. lower bounds
(we only know that finding optimal semi-matching
requires 2(|V]) -rounds...)
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THANK YOU FOR YOUR ATTENTION !
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