BACIT System Separate Compilation Guide

Bill Bynum
College of William and Mary

Scott Mitchell
College of William and Mary

Tracy Camp
Colorado School of Mines

November 14, 2001

BACI System Separate Compilation Guide

Contents

1

2

Introduction
Separate Compilation in the BACI System

Command-line Options of baar and bald
3.1 bald Command-line Options Lo o
3.2 baar Command-line Options Lo o

Examples of Separate Compilation in the BACI System
4.1 External Variables and Procedures in C——
4.1.1 Using bald To Link The .pob Files
4.1.2 Using the baar Archiver To Simplify the Link
4.2 External Array Variablesin C—— Lo
4.2.1 Using bald To Link The .pob Files
4.2.2 Using the baar Archiver To Simplify the Link
4.3 External Hoare Monitors in C—— L oo
4.3.1 Using bald To Link The .pob Files
4.3.2 Using baar To Simplify The Linko oo 0.,
4.4 External Variables and Procedures in BACI Pascal
4.4.1 Using bald To Link The .pob Files
4.4.2 Using baar To Simplify The Link
4.5 External Array Variables in BACI Pascal
4.5.1 Using bald To Link The .pob Files
4.5.2 Using the baar Archiver To Simplify the Link
4.6 External Hoare Monitors in BACI Pascal
4.6.1 Using bald To Link The .pob Files
4.6.2 Using baar To Simplify The Link 0o 0.,

Linking .pob Files Produced by BACI Pascal and C——
5.1 Using a Library Produced by BACI Pascal With a C—— Program
5.2 Using a Library Produced by C—— with a BACI Pascal Program

BACI System Separate Compilation Guide 2

1 Introduction

This document describes use of the BACI System bald PCODE linker and baar PCODE archiver.
These two tools, in conjunction with the two BACI compilers, implement separate compilation in
the BACI system.

Programs of the BACI System

program function described in

bacc BACI C—— to PCODE Compiler cmimi.ps

bapas BACI Pascal to PCODE Compiler guidepas.ps

bainterp | command-line PCODE Interpreter cmimi.ps, guidepas.ps
disasm.ps

bagui Graphical user interface to the guiguide.ps

PCODE Iuterpreter (UNIX systems only)

badis PCODE de-compiler disasm.ps

baar PCODE archiver this guide (sepcomp.ps)

bald PCODE linker this guide (sepcomp.ps)

“Separate compilation” here refers to the process of compiling source programs into separate
PCODE files with either of the BACI System compilers, bacc or bapas, creating libraries of PCODE
files with the baar archiving program, and combining collections of separately compiled PCODE
files into an executable PCODE file with the bald linker. Separate compilation was popularized
by its use in the UNIX operating system in the 1970’s. At the current time, almost all substantial
C programs in almost every computing environment use separate compilation.

Separate compilation offers several significant advantages:

Modularity

The ability to combine object files produced from separate source files into a single application
allows the programmer to decompose the source code for a large program into small, easily
understood units. The programmer is never forced to treat the entirety of the source code
for the application as one unit.

Multiple Authorship

Separate compilation allows different programmers to author separate parts of a large appli-
cation. The separate pieces are compiled and linked together to create the application. Each
programmer is freed from maintaining a detailed knowledge of the entire application, and can
concentrate on the part of the code in the programmer’s area of expertise.

Code Re-use

Software tasks that must be performed by several different applications can be isolated into
subroutines that are compiled and then stored in code libraries. When the application is
assembled by the linker, the common software can be retrieved by the linker from the ap-
propriate code libraries into the executable being constructed. Compilation of the code for
commonly occurring software tasks occurs only once.

Encapsulation, Information Hiding

Separate compilation allows the programmer to suppress details of the source code that its
users should not know, such as the variables or data structures used. Since users of the code
only have access to the object code, not the source code, users are prevented from making
assumptions about the internal execution of the software, such as variable values and data
structures used.

BACI System Separate Compilation Guide 3

Although applications written in the BACI System are considerably less substantial than most
of the separately compiled applications in a UNIX system, the advantages of separate compilation
still apply to the PCODE of the BACI System.

2 Separate Compilation in the BACI System
The BACI System user can reap the benefits of separate compilation using the following steps:

1. Produce separate PCODE files with the BACI System compilers bacc or bapas, using the
-c command-line option. This option keeps the compiler from complaining that the PCODE
object code contains unresolved external references. The PCODE files so produced will have
a .pob suffix, rather than the more familiar .pco suffix produced when the -c option isn’t
used.

2. Combine several .pob files into a single .pco file using the bald BACI System linker. The
bald linker is an “incremental” linker, in that it will accept its own output subsequently as
input. This means that the user can call bald repeatedly until all external references in the
code have been resolved.

3. Create PCODE libraries using the BACI System archiver, baar. The bald linker can use
these PCODE libraries to resolve external references. This saves the user from having to list
on the bald command line all of the PCODE files that will be used in the link in step 2.

The exact steps that a user must go through will be illustrated through a sequence of examples
in Section 4.

Separate compilation was added to the BACI System in a sequence of steps. The —c option and
the extern and EXTERNAL keywords were added to the BACI compilers in the summer of 1997. In
2000, Scott Mitchell, a Masters student in computer science at the College of William and Mary,
created the initial version of the bald linker that would link .pob files given on the command line.
This was a significant achievement, especially in view of the fact that separate compilation was not
a consideration when the BACI PCODE file was designed. Also in 2000, Bill Bynum created the
baar archiver program from a similar program written in 1996 for the Motorola 6811 CPU. In spring
and early summer of 2001, Scott Mitchell extended the bald linker to check baar-created libraries
to resolve external references. In July and August of 2001, Tracy Camp and Bill Bynum integrated
bald and baar into the BACI System, adding robustness and clarifying their user interfaces.

3 Command-line Options of baar and bald

3.1 bald Command-line Options

prompt% bald -h
BACI System: PCODE Linker 12:57 3 Aug 2001

Usage: bald [options] List_of_files_to_link
List_of_files_to_link is a list of .pob or .pco files to be linked.

This list must contain at least one file and can contain up to 50 files.

Options (can occur in any order):

-Ldirname
Look in "dirname" for a BACI link library to use to resolve external
references. "dirname" should be a fully qualified directory name.

The -L option can be repeated up to 30 times.

-1llibfile
Look in the directories given by the -L options for the library file
whose name is the concatenation of the 3 strings "lib", "libfile",

BACI System Separate Compilation Guide 4

and ".ba". For example, "-lxu" specifies the library file "libxu.ba".
BACI library files are created with the BACI archiver, baar.
The -1 option can be repeated up to 30 times.

-o outfile_prefix
Store the linked output in the file "outfile_prefix.pco" (if all extermals
externals were resolved) or "outfile_prefix.pob" (if external symbols
remain). Default output file is "aout.pco" or "aout.pob".

-m
Make a symbol map of the linked file.

-v
Do everything verbosely.

-h
Show this help information.

Example Usage:
bald -o prog diskmon.pob diskusr.pob -L.. -L/home/baci/lib -ldisk -lfsem

Link the two files diskmon.pob disusr.pob, resolving external references with
the libraries libdisk.ba and libfsem.ba, located in the parent directory (..)
or in the directory /home/baci/lib. The linked file will be named

prog.pco if all externals were resolved, or prog.pob, if not.

3.2 Dbaar Command-line Options

prompt? baar h
BACI System: baar PCODE archiver, 12:57 3 Aug 2001
Usage: baar [-]{drstwxh}[cosvV] archive-file file...
commands (at least one must be present):
d delete named modules from the archive
r insert files into archive (with Replacement)
s install a symbol index in the archive
(can be a modifier also -- see below)
display list of files in the archive
list all symbols in the archive
extract named module from the archive
show this help and exit
optional modifiers:
if archive didn’t exist previously, create the new archive silently
preserve the original dates of extracted files
install a symbol index in the archive
do everything verbosely
show version number of program and exit

<< W 0 O c BN =

4 Examples of Separate Compilation in the BACI System

The examples presented in this section are written both in BACI C—— and in BACI Pascal. There
are three examples in each language:

example language section | page
external variables and procedures C—— 4.1 5
external array variables C— 4.2 11
external Hoare monitors C— 4.3 15
external variables and procedures | BACI Pascal 4.4 20
external array variables BACI Pascal 4.5 24
external Hoare monitors BACI Pascal 4.6 27

The examples in each language are self-contained. This enables a user interested only in one
language to skip directly to the sections containing examples in that language.

BACI System Separate Compilation Guide

4.1 External Variables and Procedures in C——

The first example of separate compilation in C—— consists only of external variables and procedures.

There are five source files involved:

extvars.cm

This source file simply declares three variables, an int variable, a string[80] variable, and

a char variable.

// example of external variables, procedures and functions

// File:
//

extvars.cm
this file declares the variables

int thelnt;
string[80] theString;
char theChar;

The extvars.pob file is created with the bacc -c extvars command.

extprocs.cm, extvars.h

This source file declares the procedures and functions that access the three variables declared
in extvars.cm. The .1lst file produced by the compiler is shown instead of the .cm file,
because the .1st file shows the included header file extvars.h that declares the external
variables. The extprocs.1lst and extprocs.pob files are created with the bacc -¢ extprocs

command.

BACI System: C-- to PCODE Compiler, 12:57
Source file: extprocs.cm Wed Nov 14 17:25:36 2001

line pc
1 0

O WwWN

0
0
0
0
0

vV VV V VYV VYV
NOoO O WwWN e

8

Returning
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 9
24 12
26 13
26 13
27 13

© O WO P PPWOOOOO

[N el eNeNeNe Neo e

// example of externmal variables, procedures and functions

// File: extprocs.cm
// this file declares the procs
#include "extvars.h" // bring in the references to the variables
// example of external variables, procedures and functions
// File: extvars.h
// this header file declares the external variables
// for program units that use them

extern int thelnt;
extern string[80] theString;
extern char theChar;

to file extprocs.cm

void store_theInt(int q)
// stores ’q’ in thelnt
{
thelnt = q;
} // store_thelnt

int get_theInt()

// returns current value of thelnt
{

return thelnt;
} // get_thelnt

void store_theString(string u)
// stores ’u’ in theString
{
stringCopy(theString,u);
} // store_theString

void get_theString(string v)

// returns current val of theString in the ref. variable v

3 Aug 2001

BACI System Separate Compilation Guide

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

13
13
13
16
17
17
17
17
17
20
21
21
21
21
21
25

{
}
v
{
}

// the ’string’ type is passed by reference

stringCopy(v,theString);
// get_theString

oid store_theChar(char a)
// store the char ’a’ in theChar

theChar = a;
// store_theChar

char get_theChar()
// returns the current value of theChar

{

}

return theChar;
// get_theChar

Use of a header file to declare external references, as is done here with extvars.h, is highly
desirable. If every program unit that needs to refer to the external variables uses the same
header file, then referencing mistakes will be minimized.

Most of the source code in this file is straightforward and needs no comment. Usage of
the procedure stringCopy in get_theString and store_theString is required because the
string type is passed by reference (that is, the address of the string variable is passed to
the subroutine, rather than the contents of the string variable).

extmain.cm, extprocs.h

This file contains the main proc for the example. The extmain.lst compiler listing file
is shown below, rather than the extmain.cm source file, because the extmain.1lst file also
shows the inclusion of the extprocs.h header file. The extmain.1lst and extmain.pob files
are created with the bacc -c extmain command.

BACI System: C-- to PCODE Compiler, 12:57

Source file:

0
0
0
0
0
0
0
0
0
0
0
0
0
0

/
/
/

#

3 Aug 2001

extmain.cm Wed Nov 14 17:25:36 2001

/ example of external variables, procedures and functions

/ File: extmain.cm

/ this file contains the main program for the example

include "extprocs.h" // declare the external procs
// example of external variables, procedures and functions

// File: extprocs.h

// this header file declares the external procs
// for program units that use them

extern void store_thelInt(int yy);
extern int get_thelnt();

extern void store_theString(string

// stores ’yy’ in thelnt
// returns current value of thelnt

ss); // stores ’ss’ in theString

extern void get_theString(string tt);
// returns current val of theString in ’tt’ (strings are pass-by-reference)

extern void store_theChar(char cc);
extern char get_theChar();

Returning to file extmain.cm

line pc
1 0
2 0
3 0
4 0
5 0

> 1

> 2

> 3

> 4

> b

> 6

> 7

> 8

> 9

> 10

> 11

> 12

> 13

> 14
6 0
7 0
8 0
9 1
10 1
11 1
12 1
13 5
14 11
15 13
16 17

// stores ’cc’ in theChar
// returns current value of theChar

// Note that the external variables are not

// referred

main()

{

string[20] u;

string[95] x;

store_theInt(77);

cout << "Current value of thelnt
stringCopy(u,"Mareseatoats"); //
store_theString(u); //
get_theString(x); //

to here

is " << get_thelnt() << endl;

string variables are passed by reference
the raw string can’t appear in the call
string variables are passed by reference

BACI System Separate Compilation Guide 7

17 21 cout << "Current value of theString is \"" << x << "\"" << endl;

18 26 store_theChar(’Z’);

19 30 cout << "Current value of theChar is ’" << get_theChar() << "’" << endl;
20 37 }

Note that the parameter names used in the procedure and function declarations in the
extprocs.h file need not agree with the actual parameter names in the extprocs.cm. For
example, the store_theInt procedure is declared in extprocs.cmn file as

void store_thelInt(int q)
but in the extprocs.cm file, the store_theInt procedure is declared as
extern void store_theInt(int yy);

The bald linker checks only the types of procedure parameters, and not their names, so the
parameter names used in a header file need not agree with the source code file that defines
the procedure. In practice, most users prefer to make the parameters in the declaration of a
procedure in a header file agree with the parameters in the declaration of the procedure in
its source code file, because this is simply easier than making them different.

4.1.1 Using bald To Link The .pob Files

The three object files, extmain.pob, extvars.pob, and extprocs.pob are linked together with the
command:

prompty bald -v -m -o extexample extmain.pob extvars.pob extprocs.pob
++ Global symbols in the link file extmain.pob
(’E’ = external, ’D’ = defined)

name object type
get_theChar function char E
get_thelnt function int E
get_theStrin procedure void E
main main proc void D
store_theCha procedure void E
store_thelnt procedure void E
store_theStr procedure void E

++ Global symbols in the link file extvars.pob
(’E’ = external, ’D’ = defined)

name object type
theChar variable char D
thelnt variable int D
theString variable string D

++ Global symbols in the link file extprocs.pob
(’E’ = external, ’D’ = defined)

name object type
get_theChar function char D
get_thelnt function int D
get_theStrin procedure void D
store_theCha procedure void D
store_thelnt procedure void D
store_theStr procedure void D
theChar variable char E
thelnt variable int E
theString variable string E

Output link file stored in extexample.pco
Map file stored in extexample.map

The -v (verbose) option on the command line generates most of the output coming from the
command. If the -v option were not present, then only the last two lines would appear. The

BACI System Separate Compilation Guide 8

verbose output lists the symbols in each .pob file as the bald program encounters them. For exam-
ple, the extmain.pob file contains external references to the symbols get_theChar, get_thelnt,
get_theStrin (actually, get_theString, but only 12 characters are significant to the compiler and
linker), store_theCha, store_theInt, store_theStr and defines the main procedure.

The -o (lower case “oh”) option provides the prefix of the name of the output file of the link.
In this case, the -o option specifies that the linked file should be named extexample.pco, if all
external references are resolved (as happened here), or extexample.pob, if one or more external
references remain after the link.

The -m option produces a “symbol map” for the linked file that, in this case, is stored in the
file extexample .map:

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the extexample.pco link file
Files included in the link

index file
0 extmain.pob
1 extvars.pob
2 extprocs.pob
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
get_theChar function char OE 20D
get_thelnt function int OE 20D
get_theStrin procedure void OE 20D
main main proc void 0D
store_theCha procedure void OE 20D
store_thelnt procedure void OE 2D
store_theStr procedure void OE 20D
theChar variable char 1D 2E
thelnt variable int 1D 2E
theString variable string 1D 2E

This map file describes every reference to every symbol that appears in the linked file. For
example, the symbol map listing indicates that the three variables theChar, theInt, and theString
were defined in the file with index 1, extvars.pob, were referenced as externals in the file with
index 2, extprocs.pob, and were not referenced in the file with index 0, extmain.pob. Of course,
this information is not new to us, since we have seen the source files in this case. Because the
source files may not always be available, the symbol map information can be useful in determining
which external references have not been resolved.

The order in which the .pob files are listed on the command line does not matter. In this
case, there are six different orders in which the .pob files could be specified on the command line.
Certainly, these six .pco files produced from the different orderings will differ, but the execution
of the six .pco files should be identical (if not, then another linker bug has been discovered).

4.1.2 Using the baar Archiver To Simplify the Link

The baar archiver program can create and manage a library consisting of one or more .pob files.
The bald linker can be required to search a collection of libraries to resolve external references in
a collection of .pob files being linked, so that most of the .pob files required for the link need not
be specifically mentioned on the bald command line.

In our running example, let us suppose that we decide to use the baar program to create a link
library that bald can use to satisfy the external references in the extmain.pob program. We create
a library, named libvapro.ba, and place the extvars.pob and extprocs.pob files in it with the
command:

prompt? baar rcv libvapro.ba extvars.pob extprocs.pob
int variable thelnt

BACI System Separate Compilation Guide 9

string variable theString
character variable theChar

r- extvars.pob

external int variable thelnt
external string variable theString
external character variable theChar
void function store_thelnt

int function get_thelnt

void function store_theStr

void function get_theStrin

void function store_theCha
character function get_theChar

r- extprocs.pob

The v flag causes the verbose output shown. If it were not present, then only the lines that begin
with the r- symbol would appear. These lines indicate that the named file has been “replaced” in
(in this case, added to) the library file. The verbose output lists the symbols in the .pob file being
added to the library.

As we shall soon see, the bald linker expects the name of a library to be of the form 1ib*.ba;
that is, the string 1ib, followed by zero or more characters, and terminated by the string .ba.

The w flag of baar can be used to list the symbols in a library:

prompt}, baar vw libvapro.ba

Archive index

Declared symbols

int variable theInt in extvars.pob

string variable theString in extvars.pob

character variable theChar in extvars.pob

void function store_thelInt in extprocs.pob

int function get_thelnt in extprocs.pob

void function store_theStr in extprocs.pob

void function get_theStrin in extprocs.pob

void function store_theCha in extprocs.pob
character function get_theChar in extprocs.pob
External symbols

external int variable theInt in extprocs.pob
external string variable theString in extprocs.pob
external character variable theChar in extprocs.pob

The t flag of baar can be used to list information about the .pob files comprising a library:

prompty baar vt libvapro.ba

rw-r--r-- 34/20 283 Jul 25 07:55 2001 __.SYMDEF
rw-r--r-- 34/20 931 Nov 14 17:25 2001 extvars.pob
rw-r--r-- 34/20 2572 Nov 14 17:25 2001 extprocs.pob

The leftmost column gives the access permissions for the file. These permissions only have
meaning in a UNIX operating system. They won’t be meaningful in the MS-DOS version of the
program. The 34/20 gives the userid and groupid of the user who created the file. These values
are zero in the MS-DOS version of the program. The next number over is the size (in bytes) of the
file. The next four fields give the modification time and date for the file. The rightmost column
gives the name of the file.

The __.SYMDEF entry of the library is simply the “table of contents” for the library. This
member of the library lists the symbols occurring in the files of the library. The bald linker uses
this information to decide which files from the library should be incorporated into the file being
linked.

The baar program has two other options that might occasionally be useful to you. The x option
extracts the .pob file you name from the named library into the current directory. For example,
baar xv libvapro.ba extvars.pob would extract the copy of extvars.pob in the 1ibvapro.ba
into the current directory. The d option can be used in a similar way to delete the file you name from

BACI System Separate Compilation Guide 10

a given library. The “usage” output (the output of the command baar -h) shown in Section 3.2
gives a little more information about command-line options of the baar program.
We can then use this library to simplify the bald link of the extmain.pob file:

prompt} bald -v -m -o extexample2 extmain.pob -lvarproc
++ Global symbols in the link file extmain.pob
(’E’ = external, ’D’ = defined)

name object type
get_theChar function char E
get_thelnt function int E
get_theStrin procedure void E
main main proc void D
store_theCha procedure void E
store_thelnt procedure void E
store_theStr procedure void E

++ Global symbols in the link file extprocs.pob (./libvapro.ba)
(’E’ = external, ’D’ = defined)

name object type
get_theChar function char D
get_thelnt function int D
get_theStrin procedure void D
store_theCha procedure void D
store_thelnt procedure void D
store_theStr procedure void D
theChar variable char E
thelnt variable int E
theString variable string E

++ Global symbols in the link file extvars.pob (./libvapro.ba)
(’E’ = external, ’D’ = defined)

name object type
theChar variable char D
thelnt variable int D
theString variable string D

Output link file stored in extexample2.pco
Map file stored in extexample2.map

The bald linker goes through the following steps in response to the previous command. First,
the linker notes that the extmain.pob file contains external references. The linker then forms a list
of valid library file names by combining the directory names specified by the user through the -L
option (see section 4.2.2) with the library file names specified by the user through the -1 option,
and then opens all library files on the list of valid filenames.

The bald linker always checks the current directory (./) for library files. The libvapro.ba
library file that contains extvars.pob and extprocs.pob is in the current directory, so the -L.
option is not required in this case. In this example, the only valid library name supplied by
the user is -1lvapro. The linker first expands the vapro string of the -1 option into the library
name libvapro.ba, and then prepends the library directory ./ to obtain the fully qualified library
pathname ./libvapro.ba.

The bald linker then enters the following loop:

1. Get the next unresolved external reference from the link file being constructed. In this case,
the first such external reference will be the proc get_theChar, because the linker goes through
the symbol table from last to first, but you don’t really need to know this fact.

2. The linker consults the __.SYMDEF table of contents of each of the open libraries (in this case,
the ./libvapro.ba is the only open library) to see if any of them contains a .pob file that
defines (or “resolves”) the external reference. In this case, the bald linker will discover that
the extprocs.pob file contains a get_theChar proc with void return type.

3. The bald linker reads that file into memory from the library and links it into the current
working linkfile.

BACI System Separate Compilation Guide 11

4. If, after the link, the working linkfile contains external references that haven’t been checked
against all open libraries, then the linker goes to step 1 and repeats the process; otherwise,
the linker writes the current working linkfile to disk and terminates.

In this particular case, the above loop executes twice, because the extprocs.pob file contains
external references, too; namely, theInt, theString, and theChar. On step 2 of the second time
through the loop, the linker will discover that the extvars.pob file contains definitions of these
symbols. After the linking that occurs in step 3, the linker will realize that all external references
have been resolved and terminate.

The symbol map for the link, produced by the -m option, is:

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the extexample2.pco link file
Files included in the link

index file
0 extmain.pob
1 extprocs.pob (./libvapro.ba)
2 extvars.pob (./libvapro.ba)
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
get_theChar function char OE 1D
get_thelnt function int OE 1D
get_theStrin procedure void OE 1D
main main proc void 0D
store_theCha procedure void OE 1D
store_thelnt procedure void OE 1D
store_theStr procedure void OE 1D
theChar variable char 1E 2D
thelnt variable int 1E 2D
theString variable string 1E 20D

4.2 External Array Variables in C——

These example source files illustrate how to use arrays with separate compilation. There are six
source files involved:

arrdef.cm, tdarr23.h

This source file simply declares two dimensional array variable to be used. We show below
the arrdef.1st file from the compilation, because it also shows the included file tdarr23.h.

Because the C—— compiler grew out of the BACI Pascal compiler, some vestiges of Pas-
cal strong typing remain, such as the way that array variables must be declared as proce-
dure or function parameters. The tdarr23.h header file, shown between lines 5 and 6 of
the arrdef.cm file provide the necessary typedef to define the two-dimensional array type
Array23Parm. Two constants, diml and dim2, are used to define the dimensions of the array.
The declaration on line 7 defines the array variable A.

BACI System: C-- to PCODE Compiler, 12:57 3 Aug 2001
Source file: arrdef.cm Wed Nov 14 17:25:36 2001

line pc
1 0 // C-- Array Example
2 0 // File: arrdef.cm
3 o // define an Array23Parm array
4 0
5 0 #include "tdarr23.h" // import the typedef for Array23Parm

// C-- Array Example
// File: tdarr23.h
// provides Array23Parm typedef

vV V.V V V
O W N
(ol elNeNeNe

const int diml = 2;

BACI System Separate Compilation Guide 12

> 6 0 const int dim2 = 3;
> 7 0
> 8 0 typedef int Array23Parm[dimi] [dim2];
Returning to file arrdef.cm
6 0
7 0 Array23Parm A;

The arrdef .pob and arrdef.1lst files are created with the bacc -¢ arrdef command.

arrprocs.cm, tdarr23.h

This source file declares the two procedures that access the array, storeArray and showArray.
The arrprocs.1lst file produced by the compiler is shown instead of the arrprocs.cmn file,
because this file shows (once again) the included header file tdarr23.h that provides the array
typedef. The arrprocs.1lst and arrprocs.pob files are created with the bacc -c arrprocs
command.

BACI System: C-- to PCODE Compiler, 12:57 3 Aug 2001
Source file: arrprocs.cm Wed Nov 14 17:25:36 2001

line pc
1 0 // C-- Array Example
2 0 // File: arrprocs.cm
3 o // showArray and storeArray
4 0
5 0 #include "tdarr23.h" // import the typedef for Array23Parm

> 1 0 // C-- Array Example

> 2 0 // File: tdarr23.h

> 3 o // provides Array23Parm typedef
> 4 0

> 5 0 const int diml = 2;

> 6 0 const int dim2 = 3;

> 7 0

> 0

8 typedef int Array23Parm[dimi] [dim2];
Returning to file arrprocs.cm

6 0

7 0

8 0 void showArray(Array23Parm u)

9 0 // show u on stdout (but call it A)

10 0 {

11 0 int i, j;

12 0 for (i = 0; i < diml; i++) {

13 14 for (j = 0; j < dim2; j++)

14 28 cout << "A[" << i << "J[" <K j < "] =" << ul[i] []] "oy
15 44 cout << endl;

16 45 }

17 46 } // showArray

18 47

19 47

20 47 void storeArray(Array23Parm& a, int a0O, int a01, int a02,
21 a7 int al0, int all, int al2)

22 47 // store the 6 values in the Array23Parm array a
23 47 {

24 47 a[0][0] = a00;

26 54 a[0][1] = a01;

26 61 a[0][2] = a02;

27 68 a[1][0] = al0;

28 75 a[1][1] = aii;

29 82 al[1]1[2] = al2;

30 89 } // storeArray

The Array23Parm parameter u of the showArray procedure on lines 8 through 17 is passed
by value (that is, a copy of the array is placed on the stack at the time of the call). The
Array23Parm parameter a of the storeArray procedure on lines 20 through 30 is a reference
parameter (that is, the address of the array is passed to the subroutine, so that the actual
values stored in the array will be changed). The six values to be stored in the array, a00
through a12, are passed by value.

BACI System Separate Compilation Guide

arrmain.cm, arrprocs.h, tdarr23.h

13

This file contains the main proc for the example. The arrmain.lst compiler listing file is
shown below because it provides the two header files used, too. Note that the arrprocs.h

header file includes the tdarr23.h header file.

external in line 7 of arrmain.1st.

BACI System: C-- to PCODE Compiler, 12:57

Source file: arrmain.cm Wed Nov 14 17:25:36 2001

line pc
1 0 // C-- Array Example
2 0 // File: arrmain.cm
3 o // the main program
4 0
5 0 #include "arrproc
> 1 0 // C-- Array Example
> 2 0 // File: arrprocs.h
> 3 o // header file for storeArray usage
> 4 0
> 5 0 #include "tdarr2
>> 1 0 // C-- Array Example
>> 2 0 // File: tdarr23.h
>> 3 o // provides Array23Parm typedef
>> 4 0
>> 5 0 const int diml = 2;
>> 6 0 const int dim2 = 3;
> 7 0
>> 8 0 typedef int Array23Parm[diml][dim2];
Returning to file arrprocs.h
> 6 0
> 7 0 extern void storeArray(Array23Parm& a, int a00, int a01,
> 8 0 int al0, int all, int al2);
> 9 0 // store the 6 values in the Array23Parm array a
> 10 0
> 11 0 extern void showArray(Array23Parm u);
> 12 0 // show u on stdout (but call it A)
Returning to file arrmain.cm
6 0
7 0 extern Array23Parm A;
8 0
9 0 main()
10 1 {
11 1 cout << "Storing values ... \n";
12 2 storeArray(A,11,22,33,99,88,77);
13 12 cout << "Showing what was stored ...
14 13 showArray(A);
15 18 } // main

s.h" // import the declarations of the array procs

3 Aug 2001

3.h" // import the typedef for Array23Parm

4.2.1 Using bald To Link The .pob Files

\n";

int a02,

The Array23Parm array A is declared as

The three object files, arrdef .pob, arrprocs.pob, and arrmain.pob are linked together with the

command:

prompt? bald -v -m -o arrexample arrdef.pob arrmain.pob arrprocs.pob

Output link file stored in arrexample.pco
Map file stored in arrexample.map

The symbol map produced by the -m option is much like the previous symbol map that you

have seen:

BACI System:
Symbol map for the arrexample.pco link file
Files included in the link

PCODE Linker 12:57

index file
0 arrmain.pob
1 arrdef .pob

2 arrprocs.pob

3 Aug 2001

BACI System Separate Compilation Guide

List of symbol references

(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references

A variable array 0OE 1D

Array23Parm type array 0D 1D 20D

diml constant int 0D 1D 2D

dim2 constant int 0D 1D 20D

main main proc void 0D

showArray procedure void 0OE 2D

storeArray procedure void 0OE 20D

When the linked program is executed, the results are as you would expect:

prompt? bainterp arrexample
Storing values

Showing what was stored
A[0I[0] = 11 A[0][1]
A[11[0] = 99 A[11[1]

22 A[0][2]
88 A[1]1[2]

33
7

4.2.2 Using the baar Archiver To Simplify the Link

14

For this example, we decide to use the baar program to create two different link libraries. One
library 1ibarr.ba will be in the current directory and will contain the arrdef .pob file. The other
library libaproc.ba will be in the 1ib subdirectory of the current directory and will contain the

arrprocs.pob file.
These two libraries were created using baar in the manner you have seen previously:

prompt}, baar rcv libarr.ba arrdef.pob
constant diml

constant dim2

array variable A

r- arrdef.pob

prompt} baar rcv libarr.ba arrprocs.pob

Adding __.SYMDEF member (the archive symbol table)
constant diml

constant dim2

void function showArray

void function storeArray

r- arrprocs.pob

Finally, we link the arrmain.pob file using the following command:

prompt) bald -v -m -o arrexample2 arrmain.pob -larr -laproc -L./lib
Output link file stored in arrexample2.pco
Map file stored in arrexample2.map

The symbol map produced by the -m flag is as follows:

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the arrexample2.pco link file
Files included in the link

index file
0 arrmain.pob
1 arrdef.pob (./libarr.ba)
2 arrprocs.pob (./lib/libarr.ba)
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
A variable array 0OE 1D
Array23Parm type array 0D 1D 2D
diml constant int 0D 1D 2D
dim2 constant int 0D 1D 20D
main main proc void 0D
showArray procedure void 0OE 2D
storeArray procedure void 0OE 2D

BACI System Separate Compilation Guide 15

During the link, the linker pairs each library name given with an -1 option with each library
directory given with the -L option (plus the current directory ./) to obtain a candidates for the the
fully qualified filenames of valid library files. The bald linker tries to open each of the candidate
library files. The candidate files that open successfully are the valid library files. In this case, there
are two valid library files, ./libarr.ba and ./1lib/libaproc.ba.

Note that the bald linker has retrieved the arrdef .pob file from the ./libarr.ba library and
the arrprocs.pob file from the ./1ib/1libaproc.ba library to complete the link. The execution
of the linked file is identical to what you have seen before.

4.3 External Hoare Monitors in C——

The example that we use to illustrate external Hoare monitors is the “classical” producer/consumer
problem, in which producer processes store characters into a bounded buffer and consumer processes
consume characters from the bounded buffer. Mutually exclusive access to the bounded buffer is
managed by a Hoare monitor.

This application is implemented in seven files:

bbuff.cm

This file contains the bounded buffer management code, implemented in a Hoare monitor,
bounded_buffer. The ten-character buffer uses two int variables, nextIn and next0Out, that
give the locations in the buffer of the next character to be stored and the next character to be
retreived. The monitor uses two conditions, notFull and notEmpty, to regulate the access of
calling processes to the bounded buffer. There are two externally visible monitor procedures,
append and retrieve, that the producer and consumer processes can call.

Let us briefly go though the code for the append procedure. The monitor variable bufferCount
holds the number of characters currently in the buffer. On entry to the append procedure, if
the buffer is full (bufferCount == bufferSize), then the calling process is put to sleep on
the notFull condition. If there is space in the buffer (or when space becomes available in the
buffer through the action of retrieve and a sleeping append caller is awakened by a signal
to the notFull condition), the input parameter c is stored into the buffer. The nextIn index
is moved to the next index in the buffer, and the bufferCount variable is incremented.

// C-- Monitor Example
// File: bbuff.cm
// Bounded buffer monitor

monitor bounded_buffer {
const int bufferSize = 10;
char buffer[bufferSize];

int nextIn; // index of next character coming into buffer
int nextOut; // index of next character going out of buffer
int bufferCount; // number of characters in the buffer
condition notEmpty; // signalled when buffer is not empty
condition notFull; // signalled when buffer is not full

void append(char c)
// append the character ’c’ to the buffer

{
if (bufferCount == bufferSize) waitc(notFull);
buffer[nextIn] = c;
nextIn = (nextIn + 1) % bufferSize;
bufferCount++;
signalc(notEmpty) ;

} // append

void retrieve(char& c)
// retrieve a character from the buffer into ’c’

BACI System Separate Compilation Guide 16

if (bufferCount == 0) waitc(notEmpty);
¢ = buffer[nextOut];
nextOut = (nextOut + 1) % bufferSize;
bufferCount--;
signalc(notFull);

} // retrieve

init { nextIn = nextOut = bufferCount = 0; }
} // boundedBuffer monitor

Finally, the notEmpty condition is signaled, in case processes calling retrieve are suspended
on the nonEmpty condition. This signal is postponed to the last statement of append because
of the “Immediate Resumption Requirement” used by the BACI PCODE interpreter. This
requirement means that a process signaling a condition in a monitor is suspended so that
any process sleeping on the signaled condition can be resumed immediately (recall that only
one thread of execution at a time can be active inside a Hoare monitor). Use of Immediate
Resumption is based on the assumption that the condition that is signaled needs to be taken
care of, so any process sleeping on the condition should have a higher priority of execution in
the monitor than the signaling process.

The source code for retrieve is almost identical to the code of append, with only minor
modifications. A reference variable is used to transfer the character removed from the buffer
to the caller, rather than changing retrieve to a function of type char and returning the
character as the function’s return value. With the reference variable, the transfer occurs
immediately with the reference variable, while the return statement, if it were added, would
be delayed by the Immediate Resumption Requirement.

prod.cm, bbuff.h

The prod.1st file, produced by the compiler, is shown instead of the prod.cm file, because
the compilation listing shows the bbuff .h include file. Note that the bbuff.h include file
declares only the externally visible part of the bounded_buffer monitor, the append and
retrieve procedures.

BACI System: C-- to PCODE Compiler, 12:57 3 Aug 2001
Source file: prod.cm Wed Nov 14 17:25:36 2001
line pc
1 0 // C-- Monitor Example

2 0 // File: prod.cm
3 o // the character producer
4 0
5 0 #include "bbuff.h" // bring in the monitor
> 1 0 // C-- Monitor Example
> 2 0 // File: bbuff.h
> 3 o // bounded buffer monitor
> 4 0
> 5 0 extern monitor bounded_buffer {
> 6 0 void append(char c); // append the character ’c’ to the buffer
> 7 0 void retrieve(char& c); // retrieve a character from the buffer into ’c’
> 8 0 } // bounded_buffer monitor
Returning to file prod.cm
6 0
7 0 extern binarysem mutex; // unscramble screen output
8 0
9 0 void producer(char c)
10 0 // appends ’c’ to the buffer forever
11 0 {
12 0 while(1) {
13 2 append(c) ;
14 6 p(mutex) ;
15 8 cout << "producer " << c << " appended " << c << endl;
16 15 v(mutex) ;

BACI System Separate Compilation Guide

17
18

17

}

18 } // producer

17

The producer procedure simply calls append to adds its char parameter ¢ to the buffer
forever. Because the main program (prodcons.cm, see below) starts multiple producer and
consumer processes, screen output by either process has to be serialized through the use of a
binary semaphore, mutex, declared and initialized in the main program.

cons.cm,bbuff.h

The code for the consumer procedure is just like the code for the producer procedure, except
that retrieve is called, instead of append.

BACI System: C-- to PCODE Compiler, 12:57 3 Aug 2001
Source file: cons.cm Wed Nov 14 17:25:36 2001

line pc

1 0

2 0

3 0

4 0

5 0
> 1
> 2
> 3
> 4
> 5
> 8
> 7
> 8

Returning

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 2

15 6

16 8

17 15

18 17

19 18

(ool eNeNe Ne Ne Xeol

// C-- Monitor Example
// File: cons.cm
// the character consumer

#include "bbuff.h" // bounded buffer monitor declarations

// C-- Monitor Example
// File: bbuff.h
// bounded buffer monitor
extern monitor bounded_buffer {
void append(char c); // append the character ’c’ to the buffer
void retrieve(char& c); // retrieve a character from the buffer into ’c’

} // bounded_buffer monitor
to file cons.cm

extern binarysem mutex; // unscramble screen output

void consumer(char c)
// consumes characters from the buffer (has ID ’c’)
{
char d;
while (1) {
retrieve(d);
p(mutex) ;
cout << "consumer " << c << " retrieved " << d << endl;
v(mutex) ;
}

} // consumer

prodcons.cm,prod.h,cons.h

This file contains the source code for the main program. The two include files declare the

prototypes of the producer and consumer procedures.

BACI System: C-- to PCODE Compiler, 12:57 3 Aug 2001
Source file: prodcons.cm Wed Nov 14 17:25:36 2001

line

1

O W N

vV V.V Vv Vv
B w N

5

pc

[eielNeNeNe]

0
0
0
0
0

// C-- Monitor Example
// File: prodcons.cm
// the producer-consumer main program

#include "prod.h"
// C-- Monitor Example
// File: prod.h
// the character producer
extern void producer(char c);
// appends ’c’ to the buffer forever

Returning to file prodcons.cm
0 #include "cons.h"

6
> 1
> 2
> 3

0
0
0

// C-- Monitor Example
// File: cons.h
// the character consumer

BACI System Separate Compilation Guide 18

>
>

4 0 extern void consumer(char c);
5 0 // consumes characters from the buffer (has ID ’c’)
Returning to file prodcons.cm

7 0

8 0 binarysem mutex; // to unscramble screen output
9 0
10 0 main(Q)
11 1 {
12 1 initialsem(mutex,1);
13 4 cobegin{
14 5 producer(’A’); producer(’B’); producer(’C’);
15 17 producer(’D’); producer(’E’); producer(’F’);
16 29 consumer(’1’); consumer(’2’); consumer(’3’);
17 41 }
18 42 }

The main program declares and initializes the mutex binary semaphore that the producer
and consumer procedures use to keep their output to the terminal screen from intermixing.

In the cobegin block, the program starts six producer processes and three consumer pro-
cesses. One could add debugging output to the bounded_buffer monitor to discover that
in this case, the buffer will stay full most of the time, with producers waiting to add their
characters. If there were more consumer processes than producer processes, then the buffer
would be empty most of the time, with consumer processes waiting to remove characters.

4.3.1 Using bald To Link The .pob Files

The four object files, bbuff . pob, prod.pob, cons.pob, and prodcons.pob are linked together with

the command:

prompt% bald -m -o proconex bbuff.pob prod.pob cons.pob prodcons.pob
Output link file stored in proconex.pco
Map file stored in proconex.map

Execution of the linked program yields:

prompt?, bainterp proconex |less
Linked files: bbuff.pob prod.pob cons.pob prodcons.pob
Executing PCODE ...

producer
producer
producer
producer
producer
consumer
producer
producer
producer
producer
producer
producer
producer
consumer
producer
consumer
producer
producer
producer
consumer
consumer
consumer
consumer
producer
producer
producer
consumer

A
D
C
A
B
3
E
B
C
D
A
C
F
3
A
1
F
E
C
3
1
2
3
C
F
E
2

appended
appended
appended
appended
appended
retrieved A
appended
appended
appended
appended
appended
appended
appended
retrieved D
appended A
retrieved C
appended F
appended E
appended C
retrieved B
retrieved E
retrieved A
retrieved B
appended C
appended F
appended E
retrieved D

W= Q0=

QP> UQmMm

BACI System Separate Compilation Guide 19

producer B appended B
consumer retrieved A
consumer 1 retrieved C
producer A appended A
consumer retrieved C
producer C appended C
producer A appended A
producer D appended D

B
3
1
A
2
C
A
D
consumer 2 retrieved F
consumer 3 retrieved F
consumer 1 retrieved A
E
2
B
F
B
3
1
2

producer E appended E
consumer retrieved E
producer B appended B
producer F appended F
producer B appended B
consumer 3 retrieved C

retrieved F
retrieved C

consumer
consumer

You may find the above output confusing, because characters seem to leave the buffer in a
different order than they were entered. If you start from the top of the output, the first three
characters appended to the buffer are A, D, and C. The first three characters retrieved from the
buffer match these characters exactly. However, the fourth, fifth, and sixth characters added to the
buffer are A, B, and E, in that order, yet the the fourth, fifth, and sixth characters retrieved from
the buffer are B, E, and A.

You can add debugging output to the bounded_buffer monitor (as we did) to discover that the
program output can occur in a different order from the order that the characters enter and leave
the buffer. In this particular case, the order that the fourth, fifth, and sixth characters were added
to the buffer is exactly the same as the order in which they were retrieved. However, the append
call from the A producer reached the mutex critical section before the append calls from the B and
E producers did, so the A producer’s output appeared first. Consequently, the B producer process
was awakened from the mutex queue before the E process was, which matches the order that the
corresponding characters were appended to the queue. This preservation of order doesn’t always
happen, because the BACI semaphore queues are not necessarily FIFO.

Recalling the source code above, the producer and consumer procedures both have non-
terminating loops, so this program must be terminated by some external influence. In this case,
the program output was piped (in LINUX) into the less pager, so that the bainterp program
could be terminated by terminating the pager.

4.3.2 Using baar To Simplify The Link

In this example, we combine the bbuff . pob, prod.pob, and cons.pob, into a library file libprcon.ba
with the command:

prompt? baar rcv libprcon.ba bbuff.pob prod.pob cons.pob
monitor bounded_buff

monitor void function append

monitor void function retrieve

r- bbuff.pob

external monitor bounded_buff

external monitor void function append
external monitor void function retrieve
external binary semaphore variable mutex
void function producer

r- prod.pob

external monitor bounded_buff

external monitor void function append
external monitor void function retrieve
external binary semaphore variable mutex

BACI System Separate Compilation Guide 20

void function consumer
r- cons.pob

The execution of the proconx2.pco linker output file is much like what you have seen above.

4.4 External Variables and Procedures in BACI Pascal

This is the BACI Pascal example of external variables and procedures that corresponds to the
C—— example in Section 4.1. A Pascal programmer may find find this example mildly surprising,
because the BACI Pascal compiler differs in the syntax of external references from the “standard”
Pascal described by Niklaus Wirth.

The five BACI Pascal source files are:

pxtvars.pm

This source file simply declares three variables, an INTEGER variable, a STRING[80] variable,
and a CHAR variable. The capitalization of the keywords is merely a personal preference, and
is not required by the BACI Pascal compiler.

// BACI Pascal example of external variables, procedures and functions
// File: pxtvars.pm

// this file declares the variables
VAR

thelnt : INTEGER;

theString : STRING[80];

theChar : CHAR;

The pxtvars.pob file is created with the bapas -c pxtvars command.

pxtprocs.pm, pxtvars.h

This source file declares the procedures and functions that access the three variables declared
in pxtvars.pm. The .1st file produced by the compiler is shown instead of the .pm file, be-
cause the .1st file shows the included header file pxtvars.h that declares the external vari-
ables). The pxtprocs.lst and pxtprocs.pob files are created with the bapas -c pxtprocs
command.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: pxtprocs.pm Wed Nov 14 17:25:36 2001

line pc
1 0 // BACI Pascal example of external variables, procedures and functions
2 0 // File: pxtprocs.pm
3 o // this file declares the procs
4 0
5 0 #INCLUDE "pxtvars.h" // bring in the references to the variables
{ BACI Pascal example of external variables, procedures and functions

File: pxtvars.h
this header file declares the external variables
for program units that use them

EXTERNAL VAR

vV VVV VYV VVVYyV
0 ~NO U WN -

0
0
0
0
0 1}
0
0
0
0
0

thelnt : INTEGER;

9 theString : STRING[80];

10 theChar : CHAR;
Returning to file pxtprocs.pm

6 0

7 0 PROCEDURE store_theInt(q : INTEGER);
8 0 // stores ’q’ in thelnt
9 0 BEGIN
10 0 thelnt := q;
11 3 END; // store_thelnt
12 4

BACI System Separate Compilation Guide 21

13 4 FUNCTION get_theInt : INTEGER;

14 4 // returns current value of thelnt

15 4 BEGIN

16 4 get_theIlnt := thelnt;

17 7 END; // get_thelnt

18 8

19 8 PROCEDURE store_theString(u : STRING);

20 8 // stores ’u’ in theString

21 8 BEGIN

22 8 stringCopy(theString,u);

23 11 END; // store_theString

24 12

25 12 PROCEDURE get_theString(v : STRING);

26 12 // returns current val of theString in the ref. variable v
27 12 // the ’string’ type is passed by reference
28 12 BEGIN

29 12 stringCopy(v,theString);

30 15 END; // get_theString

31 16

32 16 PROCEDURE store_theChar(a : CHAR);

33 186 // store the char ’a’ in theChar

34 16 BEGIN

35 16 theChar := a;

36 19 END; // store_theChar

37 20

38 20 FUNCTION get_theChar: CHAR;

39 20 // returns the current value of theChar
40 20 BEGIN

41 20 get_theChar := theChar;

42 23 END; // get_theChar

External variables are noted in BACI Pascal with the combination of the EXTERNAL VAR
keywords. This differs from the Wirth Pascal syntax for external variables. The chief virtue
of the EXTERNAL VAR usage is that it is easy to parse.

Most of the source code in this file is straightforward and needs no comment. As in the
C—— example, usage of the procedure stringCopy in get_theString and store_theString
is required because the string type is passed by reference (that is, the address of the string
variable is passed to the subroutine, rather than the actual string variable itself).

pxtmain.pm, pxtprocs.h
This file contains the main procedure for the example.

In BACI Pascal, all external declarations, both local and external, must occur at the “global”
level, outside of the Pascal block delimited by the PROGRAM and END. tokens. This is why the
pxtprocs.h header file is included above the PROGRAM statement.

In addition, the EXTERNAL keyword must precede the declaration of the function or procedure
here, rather than trailing it, as in in Wirth’s Pascal.

Because of the Pascal PROGRAM statement, the main procedure is required to be named. In this
case the main procedure is named pxtmain. The pxtmain.lst compiler listing file is shown
below, rather than the pxtmain.pm source file, because the pxtmain.1lst file also shows the
inclusion of the pxtprocs.h header file. The pxtmain.lst and pxtmain.pob files are created
with the bapas -¢ pxtmain command.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: pxtmain.pm Wed Nov 14 17:25:36 2001

line pc
1 0 // BACI Pascal example of external variables, procedures and functions
2 0 // File: pxtmain.pm
3 o // this file contains the main program for the example
4 0
5 0 #INCLUDE "pxtprocs.h" // declare the external procs

> 1 0 { BACI Pascal example of external variables, procedures and functions

BACI System Separate Compilation Guide 22

File: pxtprocs.h
this header file declares the external procs
for program units that use them

}

EXTERNAL PROCEDURE store_thelnt(yy : INTEGER);
{ stores ’yy’ in theInt }

EXTERNAL FUNCTION get_theInt : INTEGER;
{ returns current value of thelnt }

EXTERNAL PROCEDURE store_theString(ss : STRING);
{ stores ’ss’ in theString }

EXTERNAL PROCEDURE get_theString(tt : STRING);
{ returns current val of theString in ’tt’ }
{ (strings are pass-by-reference) }

EXTERNAL PROCEDURE store_theChar(cc : CHAR);
{ stores ’cc’ in theChar }
EXTERNAL FUNCTION get_theChar : CHAR;
{ returns current value of theChar }
Returning to file pxtmain.pm

VVVVVVVVVVVVVVVVVVVYV
=
N =
[eelelNeNelNeNelNeo N Ne e Neo Neo Neo Neo oo Ne o Ne

6 0 // Note that the external variables are not

7 0 // referred to here

8 0 PROGRAM pxtmain;

9 0

10 0 VAR

11 0 u : STRING[20];

12 0 x : STRING[95];

13 0

14 0 BEGIN

15 1 store_theInt(77);

16 5 WRITELN("Current value of thelnt is ",get_theInt);

17 11 stringCopy(u, "Mareseatoats"); // string variables are passed by reference
18 13 store_theString(u); // the raw string can’t appear in the call
19 17 get_theString(x); // string variables are passed by reference
20 21 WRITELN("Current value of theString is \"",x, "\"");

21 26 store_theChar(’Z’);

22 30 WRITELN("Current value of theChar is ’", get_theChar, "’");

23 37 END.

Note that the parameter names used in the procedure and function declarations in the
pxtprocs.h file need not agree with the actual parameter names in the pxtprocs.pm. For
example, the store_theInt procedure is declared in pxtprocs.pm file as

PROCEDURE store_theInt(q : INTEGER);
but in the extprocs.pm file, the store_theInt procedure is declared as
EXTERNAL PROCEDURE store_theInt(yy : INTEGER);

The bald linker checks only the types of procedure parameters, and not their names, so the
parameter names used in a header file need not agree with the source code file that defines
the procedure. In practice, most users prefer to make the parameters in the declaration of a
procedure in a header file agree with the parameters in the declaration of the procedure in
its source code file, because this is simply easier than making them different.

4.4.1 Using bald To Link The .pob Files

The three object files, pxtmain.pob, pxtvars.pob, and pxtprocs.pob are linked together with the
command:

BACI System Separate Compilation Guide 23

prompt} bald -v -m -o pxtexample pxtmain.pob pxtvars.pob pxtprocs.pob
++ Global symbols in the link file pxtmain.pob
(’E’ = external, ’D’ = defined)

name object type
get_thechar function char E
get_theint function int E
get_thestrin procedure void E
pxtmain main proc void D
store_thecha procedure void E
store_theint procedure void E
store_thestr procedure void E

++ Global symbols in the link file pxtvars.pob
(’E’ = external, ’D’ = defined)

name object type
thechar variable char D
theint variable int D
thestring variable string D

++ Global symbols in the link file pxtprocs.pob
(’E’ = external, ’D’ = defined)

name object type
get_thechar function char D
get_theint function int D
get_thestrin procedure void D
store_thecha procedure void D
store_theint procedure void D
store_thestr procedure void D
thechar variable char E
theint variable int E
thestring variable string E

Output link file stored in pxtexample.pco
Map file stored in pxtexample.map

The -v (verbose) option on the command line generates most of the output coming from the
command. If the -v option were not present, then only the last two lines would appear. The
verbose output lists the symbols in each .pob file as the bald program encounters them. For exam-
ple, the extmain.pob file contains external references to the symbols get_thechar, get_theint,
get_thestrin (actually, get_thestring, but only 12 characters are significant to the compiler and
linker), store_thecha, store_theint, store_thestr and defines the pxtmain main procedure.

Because Pascal is not case-sensitive, the BACI Pascal compiler lower-cases all program identifiers
during compilation. This simplifies considerably the task of finding things in the symbol table
during compilation. For this reason, the symbols that you see during the linking process, because
they are lower-cased, may differ from the appearance of the symbols in the source file.

The -o (lower case “oh”) option provides the prefix of the name of the output file of the link.
In this case, the —o option specifies that the linked file should be named pxtexample.pco, if all
external references are resolved (as happened here), or pxtexample.pob, if one or more external
references remain.

The -m option produces a “symbol map” for the linked file that, in this case, is stored in the
file pxtexample .map:

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the pxtexample.pco link file
Files included in the link

index file
0 pxtmain.pob
1 pxtvars.pob
2 pxtprocs.pob
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
get_thechar function char OE 20D
get_theint function int OE 20D
get_thestrin procedure void OE 20D
pxtmain main proc void 0D
store_thecha procedure void OE 20D

BACI System Separate Compilation Guide 24

store_theint procedure void OE 2D
store_thestr procedure void OE 20D
thechar variable char 1D 2E
theint variable int 1D 2E
thestring variable string 1D 2E

The map file produced in this step is almost the same as the map file produced in Section 4.1.1,
except that all symbol names have been lower-cased.

4.4.2 Using baar To Simplify The Link

The only difference between linking .pob files produced by bapas and linking .pob files produced
by bacc stems from the fact that Pascal is not case-sensitive and C is. The interaction with baar
and bald is exactly as described in Section 4.1.2.

4.5 External Array Variables in BACI Pascal

This is the BACI Pascal example of external an external array that corresponds to the C——
example in Section 4.2.
The six BACI Pascal source files required by the example are:

pardef.pm, ptarr23.h

This source file simply declares two dimensional array variable to be used. We show below
the pardef .1st file from the compilation, because it also shows the included file ptarr23.h.

Because Pascal is strongly typed, arrays that will be used as subroutine parameters require a
type declaration. The ptarr23.h header file, shown between lines 6 and 7 of the pardef .pm
file provide the necessary definition of the two-dimensional array type Array23Parm. Two
constants, diml and dim2, are used to define the dimensions of the array. To mimic the
behavior of the C—— program exactly, two additional constants, dimimi (= diml — 1) and
dim2ml (= dim2 — 1), are needed.

The declaration on line 9 defines the array variable A.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: pardef.pm Wed Nov 14 17:25:36 2001
line pc
1 0 // BACI Pascal Array Example

2 0 // File: pardef.pm
3 o // define an Array23Parm array
4 0
5 0 #INCLUDE "ptarr23.h" // import the typedef for Array23Parm
> 1 0 // BACI Pascal Array Example
> 2 0 // File: ptarr23.h
> 3 o // provides Array23Parm type definition
> 4 0
> 5 0 CONST
> 6 0 diml = 2;
> 7 0 dimiml = 1;
> 8 0 dim2 = 3;
> 9 0 dim2ml = 2;
> 10 0
> 11 0 TYPE
> 12 0 Array23Parm = ARRAY [0..dimimi , 0..dim2mi] OF INTEGER;

Returning to file pardef.pm

6 0
7 0 VAR
8 0 A : Array23Parm;

The pardef .pob and pardef.1lst files are created with the bapas -c pardef command.

BACI System Separate Compilation Guide 25

parprocs.cm, ptarr23.h

This source file declares the two procedures that access the array, storeArray and showArray.
The parprocs.1st file produced by the compiler is shown instead of the parprocs.pm file,
because the parprocs.1lst file shows the included header file ptarr23.h that provides the
necessary type definition. The parprocs.lst and arrprocs.pob files are created with the
bapas -c parprocs command.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001

Source file: parprocs.pm Wed Nov 14 17:25:36 2001

line pc
1 0 // BACI Pascal Array Example

2 0 // File: parprocs.pm
3 o // showArray and storeArray
4 0
5 0 #INCLUDE "ptarr23.h" // import the typedef for Array23Parm
> 1 0 // BACI Pascal Array Example
> 2 0 // File: ptarr23.h
> 3 o // provides Array23Parm type definition
> 4 0
> 5 0 CONST
> 6 0 diml 2;
> 7 0 dimiml = 1;
> 8 0 dim2 = 3;
> 9 0 dim2ml = 2;
> 10 0
> 11 0 TYPE
> 12 0 Array23Parm = ARRAY [0..dimimil , 0..dim2mi] OF INTEGER;

Returning to file parprocs.pm

6 0

7 0 PROCEDURE showArray(u : Array23Parm);

8 0 // show u on stdout (but call it A)

9 0 VAR

10 0 i, j : INTEGER;

11 0 BEGIN

12 0 FOR i := 0 TO dimiml DO

13 4 BEGIN

14 4 FOR j := 0 TO dim2m1 DO

15 8 wRITE(IIA[II’i’II’II’j’IIJ = |l’u[i’j],ll II);
16 24 WRITELN;

17 25 END;

18 26 END; // showArray

19 27

20 27 PROCEDURE storeArray(VAR a : Array23Parm;

21 27 a00, a01, a02, al0, all, al2 : INTEGER);
22 27 // store the 6 values in the Array23Parm array a
23 27 BEGIN

24 27 a[0,0] := a00;

25 34 al0,1] := a01;

26 41 al0,2] := a02;

27 48 a[1,0] := al0;

28 55 a[1,1] := alil;

29 62 a[1,2] := al2;

30 69 END; // storeArray

The Array23Parm parameter u of the showArray procedure on lines 9 through 20 is passed
by value (that is, a copy of the array is placed on the stack at the time of the call). The
Array23Parm parameter a of the storeArray procedure on lines 23 through 33 is a reference
parameter (that is, the address of the array is passed to the subroutine, so that the actual
values stored in the array will be changed). The six values to be stored in the array, a00
through al12, are passed by value. The dimiml and dim2mil constants are useful in the FOR
loops of lines 14 and 16 of showArray.

parmain.pm, parprocs.h, ptarr23.h

This file contains the main program for the example. The parmain.lst compiler listing file
is shown below, because it provides the two header files used, too. Note that the parprocs.h

BACI System Separate Compilation Guide 26

header file includes the ptarr23.h header file. The Array23Parm array A is declared as
external in lines 8 and 9 of parmain.lst.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: parmain.pm Wed Nov 14 17:25:36 2001
line pc
1 0 // BACI Pascal Array Example

2 0 // File: parrmain.pm
3 o // the main program
4 0
5 0 #INCLUDE "parprocs.h" // import the declarations of the array procs
> 1 0 { BACI Pascal Array Example
> 2 0 File: parprocs.h
> 3 0 header file for storeArray usage
> 4 o }
> 5 0
> 6 0 #INCLUDE "ptarr23.h" { import the defintion of Array23Parm type }
> 1 0 // BACI Pascal Array Example
> 2 0 // File: ptarr23.h
> 3 o // provides Array23Parm type definition
>> 4 0
> b 0 CONST
>> 6 0 diml = 2;
>> 7 0 dimiml = 1;
>> 8 0 dim2 = 3;
>> 9 0 dim2ml = 2;
>> 10 0
> 11 0 TYPE
>> 12 0 Array23Parm = ARRAY [0..dimimil , O..dim2m1] OF INTEGER;
Returning to file parprocs.h
> 7 0
> 8 0 EXTERNAL PROCEDURE storeArray(VAR a : Array23Parm;
> 9 0 a00, a01, a02, al0, all, al2 : INTEGER);
> 10 0 { store the 6 values in the Array23Parm array a }
> 11 0
> 12 0 EXTERNAL PROCEDURE showArray(u : Array23Parm);
> 13 0 { show u on stdout (but call it A) }
Returning to file parmain.pm
6 0
7 0 EXTERNAL VAR
8 0 A : Array23Parm;
9 0
10 0 PROGRAM mainarray;
11 0 BEGIN
12 1 WRITELN("Storing values ... ");
13 3 storeArray(A,11,22,33,99,88,77);
14 13 WRITELN("Showing what was stored ... ");
16 15 showArray(A);

16 20 END. // main

Note once again that the external declarations occur at the “global level”, before the PROGRAM
token occurs on line 10 of the parmain.pm file.

4.5.1 Using bald To Link The .pob Files

The three object files, pardef .pob, parprocs.pob, and parmain.pob are linked together with the
command:

prompt} bald -m -o parexample pardef.pob parmain.pob parprocs.pob
Output link file stored in parexample.pco
Map file stored in parexample.map

The symbol map produced by the -m option is much like the previous symbol map that you
have seen (including the lower-cased symbols):

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the parexample.pco link file

BACI System Separate Compilation Guide 27

Files included in the link

index file
0 parmain.pob
1 pardef .pob
2 parprocs.pob
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
a variable array 0OE 1D
array23parm type array 0D 1D 20D
diml constant int 0D 1D 20D
dimiml constant int 0D 1D 2D
dim2 constant int 0D 1D 2D
dim2ml constant int 0D 1D 20D
mainarray main proc void 0D
showarray procedure void 0OE 20D
storearray procedure void OE 2D

When the linked program is executed, the results are as shown in Section 4.2.1.

4.5.2 Using the baar Archiver To Simplify the Link

The only difference between linking .pob files produced by bapas and linking .pob files produced
by bacc stems from the fact that Pascal is not case-sensitive and C is. The interaction with baar
and bald is exactly as described in Section 4.2.2.

4.6 External Hoare Monitors in BACI Pascal

The example that we use to illustrate external Hoare monitors is the “classical” producer/consumer
problem, in which producer processes store characters into a bounded buffer and consumer processes
consume characters from the bounded buffer. Mutually exclusive access to the bounded buffer is
managed by a Hoare monitor. The C—— version is discussed in Section 4.3.

This application is implemented in seven files:

pbbuff.pm

This file contains the bounded buffer management code, implemented in a Hoare monitor,
bounded_buffer. The ten-character buffer uses two INTEGER variables, nextIn and next0Out,
that give the locations in the buffer of the next character to be stored and the next character to
be retreived. The monitor uses two conditions, notFull and notEmpty, to regulate the access
of calling processes to the bounded buffer. an INTEGER variable. There are two externally
visible monitor procedures, append and retrieve that the producer and consumer processes
can call.

Let us briefly go though the code for the append procedure. The monitor variable bufferCount
holds the number of characters currently in the buffer. On entry to the append procedure,
if the buffer is full (bufferCount = bufferSize), then the calling process is put to sleep on
the notFull condition. If there is space in the buffer (or when space becomes available in the
buffer through the action of retrieve and a sleeping append caller is awakened by a signal
to the notFull condition), the input parameter c is stored into the buffer. The nextIn index
is moved to the next index in the buffer, and the bufferCount variable is incremented.

// BACI Pacal Monitor Example
// File: pbbuff.pm
// Bounded buffer monitor

MONITOR bounded_buffer;
CONST
bufferSize = 10;

BACI System Separate Compilation Guide 28

bufferSizeml = 9;

VAR
buffer : ARRAY [0..bufferSizeml] OF CHAR; // the character buffer
nextIn : INTEGER; // index of next character coming into buffer

nextOut : INTEGER; // index of next character going out of buffer
bufferCount : INTEGER; // number of characters in the buffer
notEmpty : CONDITION; // signalled when buffer is not empty
notFull : CONDITION; // signalled when buffer is not full

PROCEDURE append(c : CHAR);
// append the character ’c’ to the buffer
BEGIN
IF (bufferCount = bufferSize) THEN WAITC(notFull);
buffer [nextIn] c;
nextIn := (nextIn + 1) MOD bufferSize;
bufferCount := bufferCount + 1;
SIGNALC (notEmpty) ;
END; // append

PROCEDURE retrieve(VAR c : CHAR);

// retrieve a character from the buffer into ’c’
BEGIN

IF (bufferCount = 0) THEN WAITC(notEmpty);

¢ := buffer[nextOut];

nextOut := (nextOut + 1) MOD bufferSize;
bufferCount := bufferCount - 1;
SIGNALC(notFull);

END; // retrieve

BEGIN // init block
nextIn := 0;
nextOut := 0;
bufferCount := 0;
END; // bounded_buffer monitor

Finally, the notEmpty condition is signaled, in case processes calling retrieve were suspended
on the nonEmpty condition. This signal is postponed to the last statement of append because
of the “Immediate Resumption Requirement” used by the BACI PCODE interpreter. This
requirement means that a process signaling a condition in a monitor is suspended so that any
process sleeping on the condition can be resumed immediately (recall that only one thread of
execution at a time can be active inside a Hoare monitor). Use of Immediate Resumption is
based on the assumption that the condition that is signaled needs to be taken care of, so any
process sleeping on the condition should have a higher priority of execution in the monitor
than the signaling process.

The source code for retrieve is almost identical to the code of append, with only minor
modifications. A reference variable is used to transfer the character removed from the buffer
to the caller, rather than changing retrieve to a function of type CHAR and returning the
character as the function’s return value, because with the reference variable, the transfer
occurs immediately with the reference variable, while the return statement, if it were added,
would be delayed by the Immediate Resumption Requirement.

pprod.cm, pbbuff.h

The pprod.1st file, produced by the compiler, is shown instead of the pprod.pm file, because
the compilation listing shows the pbbuff.h include file. Note that the pbbuff.h include file
declares only the externally visible part of the bounded_buffer monitor, the append and
retrieve procedures.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: pprod.pm Wed Nov 14 17:25:36 2001
line pc
1 0 // BACI Pascal Monitor Example
2 0 // File: pprod.pm

BACI System Separate Compilation Guide 29

3 o // the character producer
4 0
5 0 #INCLUDE "pbbuff.h" // bring in the monitor
> 1 0 // BACI Pascal Monitor Example
> 2 0 // File: pbbuff.h
> 3 0o // bounded buffer monitor
> 4 0
> 5 0 EXTERNAL MONITOR bounded_buffer;
> 6 0 PROCEDURE append(c : CHAR); // append the character ’c’ to the buffer
> 7 0 PROCEDURE retrieve(VAR c : CHAR); // retrieve a character from the buffer into ’c’
> 8 0 END; // bounded_buffer monitor
Returning to file pprod.pm
6 0
7 0 EXTERNAL VAR
8 0 mutex : BINARYSEM; // unscramble screen output
9 0
10 0 PROCEDURE producer(c : CHAR);
11 0 // appends ’c’ to the buffer forever
12 0 BEGIN
13 0 WHILE (TRUE) DO
14 2 BEGIN
15 2 append(c) ;
16 6 P(mutex) ;
17 8 WRITELN("producer ",c," appended ",c);
18 15 V(mutex) ;
19 17 END;
20 18 END; // producer

The producer procedure simply calls append to add its CHAR parameter ¢ to the buffer forever.
Because the main program (pprodcon.pm, see below) starts multiple producer and consumer
processes, screen output by either process has to be serialized through the use of a binary
semaphore, mutex, declared and initialized in the main program.

pcons.pm,pbbuff.h

The code for the consumer procedure is just like the code for the producer procedure, except
that retrieve is called, instead of append.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: pcons.pm Wed Nov 14 17:25:36 2001

lin
1

g W N

Vv VV V V V VYV

e

N OO WN e

8

pc

[elelNeNeNe]

Returning

6

7

8

9
10
11
12
13
14
15
16
17
18
19

AN NOOOOOOOOOO

[« lNeNeNeNe Ne el

// BACI PascalMonitor Example
// File: pcons.pm
// the character consumer

#INCLUDE "pbbuff.h" // bounded buffer monitor declarations
// BACI Pascal Monitor Example
// File: pbbuff.h
// bounded buffer monitor

EXTERNAL MONITOR bounded_buffer;
PROCEDURE append(c : CHAR); // append the character ’c’ to the buffer
PROCEDURE retrieve(VAR c¢ : CHAR); // retrieve a character from the buffer into ’c’
END; // bounded_buffer monitor
to file pcons.pm

EXTERNAL VAR
mutex : BINARYSEM; // unscramble screen output

PROCEDURE consumer(c: CHAR);
// consumes characters from the buffer (has ID ’c’)
VAR
d : CHAR;
BEGIN
WHILE (TRUE) DO
BEGIN
retrieve(d);
P(mutex);
WRITELN("consumer ",c," retrieved ",d);

BACI System Separate Compilation Guide 30

20 15 V(mutex) ;
21 17 END;
22 18 END; // consumer

pprodcon.pm,pprod.h,pcons.h

This file contains the source code for the main program. The two include files declare the
prototypes of the producer and consumer procedures.

BACI System: BenAri Pascal PCODE Compiler, 12:57 3 Aug 2001
Source file: pprodcon.pm Wed Nov 14 17:25:36 2001
line pc
1 0 // BACI Pascal Monitor Example

2 0 // File: pprodcon.pm
3 o // the producer-consumer main program
4 0
5 0 #INCLUDE "pprod.h"
> 1 0 // BACI Pascal Monitor Example
> 2 0 // File: pprod.h
> 3 o // the character producer
> 4 0 EXTERNAL PROCEDURE producer(c : CHAR);
> 5 0 // appends ’c’ to the buffer forever

Returning to file pprodcon.pm
6 0 #INCLUDE "pcons.h"

> 1 0 // BACI Pascal Monitor Example
> 2 0 // File: pcoms.h
> 3 o // the character consumer
> 4 0 EXTERNAL PROCEDURE consumer(c : CHAR);
> 5 0 // consumes characters from the buffer (has ID ’c’)
Returning to file pprodcon.pm
7 0
8 0 VAR
9 0 mutex : BINARYSEM; // to unscramble screen output
10 0

11 0 PROGRAM ProdCons;
12 0 BEGIN

13 1 INITIALSEM(mutex,1);

14 4 COBEGIN

15 5 producer(’A’); producer(’B’); producer(’C’);
16 17 producer(’D’); producer(’E’); producer(’F’);
17 29 consumer(’1’); consumer(’2’); consumer(’3’);
18 41 COEND;

19 42 END. // ProdCons

The main program declares and initializes the mutex binary semaphore that the producer
and consumer procedures use to keep their output to the terminal screen from intermixing.

In the COBEGIN block, the program starts six producer processes and three consumer pro-
cesses. One could add debugging output to the bounded_buffer monitor to discover that
in this case, the buffer will stay full most of the time, with producers waiting to add their
characters. If there were more consumer processes than producer processes, then the buffer
would be empty most of the time, with consumer processes waiting to remove characters.

4.6.1 Using bald To Link The .pob Files

The four object files, pbbuff . pob, pprod.pob, pcons.pob, and pprodcon.pob are linked together
with the command:

prompty bald -m -o pproconx pbbuff.pob pprod.pob pcons.pob pprodcon.pob
OQutput link file stored in pproconx.pco
Map file stored in pproconx.map

Execution of the linked program yields:

BACI System Separate Compilation Guide 31

prompt?, bainterp pproconx | less
Linked files: pbbuff.pob pprod.pob pcons.pob pprodcon.pob
Executing PCODE ...

producer E appended E
producer B appended B
consumer 3 retrieved E
producer A appended A
producer D appended D
consumer 2 retrieved B
producer E appended E
producer B appended B
consumer 3 retrieved A
producer F appended F
producer C appended C
producer B appended B
consumer 2 retrieved D
producer E appended E
consumer 3 retrieved E
producer F appended F
producer D appended D
producer E appended E
producer D appended D
consumer 1 retrieved B
producer A appended A
producer D appended D
producer A appended A
producer F appended F
consumer 3 retrieved F
producer C appended C
consumer 1 retrieved B
producer A appended A
consumer 3 retrieved E
consumer 2 retrieved C
producer F appended F
consumer 3 retrieved F
producer E appended E
producer B appended B
consumer 2 retrieved D
consumer 3 retrieved E
producer A appended A
producer B appended B
producer F appended F
consumer 3 retrieved D
consumer 1 retrieved D
consumer 2 retrieved A
producer A appended A
producer E appended E
consumer 3 retrieved A

You may find the above output confusing, because characters seem to leave the buffer in a
different order than they were entered. If you start from the top of the output, the first seven
characters appended to the buffer are E, B, A, D, E, B, and F. The first seven characters retrieved
from the buffer match these characters exactly. However, the eighth, ninth, and tenth characters
added to the buffer are apparently C, B, and E, in that order, yet the the eighth, ninth, and tenth
characters retrieved from the buffer are B, E, and C.

You can add debugging output to the bounded_buffer monitor (as we did) to discover that the
program output can occur in a different order from the order that the characters enter and leave
the buffer. In this particular case, the order that the eighth, ninth, and tenth characters were added
to the buffer is exactly the same as the order in which they were retrieved. However, the append
call from the C producer reached the mutex critical section before the append calls from the B and
E producers did, so the C producer’s output appeared first. Consequently, the B producer process
was restarted from the mutex queue before the E was, even though these producers had appended
their characters in the opposite order.

BACI System Separate Compilation Guide 32

Recalling the source code above, the producer and consumer procedures both have non-
terminating loops, so this program must be terminated by some external influence. In this case,
the program output was piped (in LINUX) into the less pager, so that the bainterp program
could be terminated by terminating the pager.

4.6.2 Using baar To Simplify The Link

In this example, we combine the pbbuff.pob, pprod.pob, and pcons.pob, into a library file
libpprco.ba with the command:

prompt? bald -m -o pprocox2 pprodcon.pob -lpprco
Output link file stored in pproconx.pco
Map file stored in pproconx.map

The execution of the proconx2.pco linker output file is much like what you have seen above.

5 Linking .pob Files Produced by BACI Pascal and C——

The .pob files produced by the BACI Pascal and C—— compilers can be combined, but to do so
successfully, you must be aware of two important facts:

1. All identifiers in a BACI Pascal .pob file are in lower case.

Since Pascal is not case-sensitive (unlike C), the BACI Pascal compiler lower-cases all identi-
fiers to facilitate parsing an input file. So, if you plan to call routines written in BACI Pascal
from a C—— program, the subroutine name that you use should be in lower case, no matter
what the subroutine name looks like in the BACI Pascal source. If you plan to call routines
written in C—— from a BACI Pascal program, then you can use any combination of upper
and lower case in the header files declaring the external references, since the BACI Pascal
compiler will lower-case the names during compilation.

2. The index of the first element in a C array is always zero.

As you probably know, the C language uses zero-indexing for all arrays (the index of the first
element in the array is zero), whereas in Pascal, the index set of an array can be any finite set
of consecutive integers. This means that in a BACI Pascal program, zero-indexing must be
used with any array declared in a C—— source file. This also means that in a C—— program,
you cannot use arrays declared in BACI Pascal that are not zero-indexed.

5.1 Using a Library Produced by BACI Pascal With a C—— Program

Because of the way the bounded buffer examples in C—— in Section 4.3 and BACI Pascal in

Section 4.6 are constructed, we will be able to use the 1ibpprco.ba library produced in Section 4.6.2

when linking the prodcons.pob file produced from the prodcons.cm source file in Section 4.3.
The following bald command performs the link:

prompt} bald -m -o cxplib prodcons.pob -lpprco
Output link file stored in cxplib.pco
Map file stored in cxplib.map

The -m option in the command produces the following symbol map:

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the cxplib.pco link file

Files included in the link

index file

0 prodcons.pob

BACI System Separate Compilation Guide 33

1 pcons.pob (./libpprco.ba)
2 pprod.pob (./libpprco.ba)
3 pbbuff.pob (./libpprco.ba)
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
append mon. procedure void 1E 2E 3D
bounded_buff monitor void 1E 2E 30D
consumer procedure void 0OE 1D
main main proc void 0D
mutex variable binarysem 0D 1E 2E
producer procedure void 0OE 20D
retrieve mon. procedure void 1E 2E 30D

As you can see from the symbol map, the two external references in the prodcons.cm file,
producer and consumer, were found in the files pprod.pob and pcons.pob in the BACI Pascal
library 1ibpprco.ba. Construction of this library is described in Section 4.6.2. These two files con-
tain external references to the bounded_buff monitor and its two procedures append and retrieve,
so the linker has also incorporated the file pbbuff.pob from the library 1ibpprco.ba to resolve
those references. The external references to the mutex binary semaphore in the pprod.pob and
pcons .pob files were resolved by the definition of mutex in the prodcons.pob file.

This link is successful because the external references in the C—— program are in lower case,
which is how the BACI Pascal has compiled the files included in the 1ibpprco.ba library. Zero
array indexing doesn’t really figure in this example, because array used in the BACI Pascal im-
plementation of the bounded buffer monitor is an internal data structure of the monitor and is
not externally visible. This particular array does use zero-indexing to simplify the array index
calculations, rather than to supply compatibilty.

Execution of the linked program, cxplib.pco, produces output similar to the executions shown
in Sections 4.3.1 and 4.6.1.

5.2 Using a Library Produced by C—— with a BACI Pascal Program

If you have read the previous section, you have probably guessed correctly that it is possible to
link the producer/consumer main program written in BACI Pascal with the 1ibprcon.ba library
composed of .pob files created by C——.
The following bald command performs the link:
prompt} bald -m -o pxclib pprodcon.pob -lprcon

Output link file stored in pxclib.pco
Map file stored in pxclib.map

The -m option in the command produces the following symbol map:

BACI System: PCODE Linker 12:57 3 Aug 2001
Symbol map for the pxclib.pco link file
Files included in the link

index file
0 pprodcon.pob
1 cons.pob (./libprcon.ba)
2 prod.pob (./libprcon.ba)
3 bbuff.pob (./libprcon.ba)
List of symbol references
(’E’ = external, ’D’ = defined, ’U’ = unknown)
the integer shown is an index into the link file list above
name object type references
append mon. procedure void 1E 2E 30D
bounded_buff monitor void 1E 2E 30D
consumer procedure void OE 1D
mutex variable Dbinarysem 0D 1 E 2E
prodcons main proc void 0D
producer procedure void 0OE 2D
retrieve mon. procedure void 1E 2E 30D

BACI System Separate Compilation Guide 34

The analysis of the symbol map is much like the analysis in the previous section and won’t be
repeated here.

As in the previous section, this link is successful because the external references in the BACI
Pascal program get lower-cased by the compiler. These symbols are defined in lower case in the C——
source files used to create the the prod.pob, cons.pob, and bbuff.pob files of the libprcon.ba
library. Construction of this library file is described in Section 4.3.2. As before, zero array indexing
doesn’t really figure here, because the array used in the C—— implementation of the bounded buffer
monitor is an internal data structure of the monitor and is not externally visible.

Execution of the linked program, pxclib.pco, produces output similar to the executions shown
in Sections 4.3.1 and 4.6.1.

