
Alana – A Turing Machine Simulator

Markus Triska (0225855)1

December 8, 2003

Abstract

This paper presents Alana2 – a program simulating the execution of any
standard Turing machine, encoded in a suitable description language. It
also provides a short overview of the theory behind Turing machines.

1 Theoretical discussion

1.1 Definition of a Turing machine

A Turing machine (or TM for short) is an abstract device named after its
designer, Alan Turing. Its components are a storage unit, a control unit and a
read-write head. We can think of the storage unit as a one-dimensional array
of cells that extends indefinitely in both directions. At any time, each cell can
hold exactly one symbol. In analogy to magnetic tapes used in typewriters and
computers, the storage device is also called a tape, and the read-write head is
also called tape head. The tape head can move left or right on the tape. In each
move, it can read and write the symbol of the cell that it is placed on. Figure 1
schematically depicts the device, which we shall call a standard TM.

control unit

2 2 2c a 2 b

tape head

Figure 1: Schematic depiction of a Turing machine

1This project was done as “Projektpraktikum (mit Bakk.arbeit)”, advisor G. Salzer
2Alana stands for “Alana lacks a natural acronym”

1



Alana, December 8, 2003

Formally, a Turing machine M is defined by a 7-tuple,

M = (Q, Σ, Γ, δ, q0,2, F )

where

Q is the set of internal states,

Γ is the tape alphabet (symbols the tape head can read from and write to the
tape),

Σ denotes the input alphabet (symbols that the tape can contain initially, it is
often assumed that Σ ⊆ Γ),

δ is the transition function,

2 ∈ Γ is the special blank symbol,

q0 ∈ Q is the starting or initial state,

F ⊆ Q is the set of final, halt or accepting states.

The blank symbol (‘2’ in this paper, ‘B’, ‘ε’ or ‘λ’ in some others) is special
because every cell of the tape is assumed to contain this symbol if nothing
else is specified. Therefore, it is usually assumed that 2 6∈ Σ, because one
could not reliably find the end of the input otherwise – there could always be
some character left on the tape, after an arbitrary number of blank symbols,
and we would look for it forever if the tape is all blank. A similar restriction
is necessary if we agree upon an ending delimiter for the input, because this
delimiter obviously must not occur in the input in this case.

At any time, we know two things about a TM:

• the current tape content (= content of every cell of the tape), and in
particular, the content of the cell under the tape head

• the current state of the machine

This is called the configuration, or instantaneous description, of the TM.

1.2 Transitions and computation

Initially, a TM is in the starting state, and any optional initial tape content is
located to the right of the tape head, with the latter being positioned over the
first symbol. If no initial tape content is specified, the tape head is positioned
over any cell.

Given the current state and the symbol under the tape head, we can deter-
mine what to do next via the transition function δ, which is defined as

δ : Q× Γ → Q× Γ× {L,R}

A single transition of the form

δ(q1, a) = (q2, b, R)

means that if the machine is in state q1 and the symbol under the tape head
is ‘a’, it will (in this order):

2



Alana, December 8, 2003

1. switch to state q2,

2. write the symbol ‘b’ at the current position of the tape head

3. move the tape head one cell right, according to the move symbol, ‘R’. The
tape head would shift left if we specified ‘L’ as the move symbol.

The machine halts when there is no transition defined for the current con-
figuration. The input is said to be accepted by the machine if the machine halts
in an accepting state, not accepted otherwise. A sequence of transitions leading
to an accepting state is called a computation. After the input is accepted by
the TM, the final tape content is called the result of the computation. The
process of computation is deterministic in the sense that for every possible con-
figuration, the transition function can define at most one 3-tuple of next state,
symbol and direction.

1.3 Graphical representation of Turing machines

A TM is naturally depicted as a graph, where states are represented by cir-
cles. The starting state is drawn using a thicker pen, and accepting states are
indicated by double-circles.

A line going from state q0 to state q1 with a label of the form “a/b/D” rep-
resents a part of the transition function and means δ(q0, a) = (q1, b,D). When
each transition that switches to state q moves the tape head in the same di-
rection D, we can write D in place of the state’s name and print the latter
somewhere nearby the respective circle. We can thus avoid printing the direc-
tion in the label of each line that enters said state q. Labels of the (reduced)
form “a/a” can then be abbreviated as ‘a’.

Figure 2 gives an example of a simple TM’s graph. This TM performs
addition of two numbers in unary notation. This particular encoding scheme
is often very useful to avoid more complicated calculations: 0 is represented
by ‘2’, 1 is represented by ‘1’, 2 by “1 1”, 3 by “1 1 1”, and so on. Of course,
any other symbol could be used to indicate the value of the number as well.
To add two numbers specified in unary encoding, separated by ‘+’, we simply
replace ‘+’ by ‘1’ and delete the last ‘1’ on the tape. After that, we rewind the
tape and place the tape head on the first cell of the result.

R R L L R

1
+/1

1

2 1/2

1
2

q1 q2 q3 q4 q5

Figure 2: Adding two numbers in unary encoding

1.4 Textual notation of transitions

It is convenient to introduce a textual notation to describe instantaneous de-
scriptions and transitions, in which

s1s2 · · · sk−1qsksk+1 · · · sn

3



Alana, December 8, 2003

means that the tape content is s1s2 · · · sn, the machine is in state q and the
tape head is over the symbol immediately following q, in this case sk. Figure 3
shows a graphical representation of this configuration. To avoid ambiguity, this
notation requires that Q and Γ be disjoint, i. e., Q ∩ Γ = ∅. The unspecified
part of the tape is assumed to contain all blanks, which can of course also occur
in the instantaneous description.

s1 s2 sk−1 sk sk+1 sn

tape head

machine state: q

Figure 3: Graphical representation of the stated configuration

The operator ` is used to indicate a move from one configuration to another.
It can be subscripted like `M to distinguish between several machines.

(1) (2) (3)

1 + 1 1 1 1 1 1 1

q1 q2 q2

Figure 4: A sequence of transitions

The sequence of transitions depicted in Figure 4 can thus be described as

1q1+1 ` 11q21 ` 111q2 .

Incidentally, these are exactly the transitions that the TM in Figure 2 would
carry out. Its next steps would be

111q22 ` 11q31 ` 1q41 ` q411 ` q4211 ` q511 .

The blank symbol was explicitly stated in this case to clarify the situation. The
symbol `∗ is used to denote an arbitrary number of transitions, including 0. We
could therefore also write

1q1+1 `∗ q511

for the sequence of transitions that we looked at. A transition

s1s2 · · · sk−1q1sksk+1 · · · sn ` s1s2 · · · sk−1tq2sk+1 · · · sn

is admissible if and only if

δ(q1, sk) = (q2, t, R)

and analogously for moving left.

4



Alana, December 8, 2003

1.5 Turing machines and contemporary computers

Now that we have found a TM to perform integer addition, the question arises
whether other functions and algorithms can be expressed in terms of a TM. It
is easy to see that we can devise TMs to perform subtraction, multiplication
and comparisons, but what about more complicated functions?

Let us first define a class of functions:

A function f with domain D is called (Turing-)computable if there
exists some Turing machine M = (Q, Σ, Γ, δ, q0,2, F ) such that

q0w `∗M qff(w), q0 ∈ Q, qf ∈ F,

for all w ∈ D.

Note that the domain D plays a critical role in this definition. For a function to
be computable, there must be a TM that computes the function on the whole of
its domain. If we expect only “yes” or “no” as the result of the function, we use
the terms decidable and undecidable instead of computable and uncomputable.

As outlined in [Davis 2000] and [Davis et al. 1994], all the common mathema-
tical functions, no matter how complex, are Turing-computable. In fact, Turing
machines are so powerful that the definition of Turing-computable functions is
widely believed broad enough to include any existing mechanical computation,
including all calculations of a typical contemporary digital computer. This is
known as the Church-Turing-Thesis.

Alternative models have been proposed to define “mechanical computation”,
but none of them are more powerful than the Turing machine model, and it is
unlikely that a simpler model that is equally powerful can be found. Examples
of how to translate concepts of contemporary high-level languages – such as
variables, conditions, loops and function calls – to a TM can be found in [Den-
ning et al. 1978], [Hopcroft et al. 2000] and [Linz 2001]. Using these features,
one can also simulate the register architecture of today’s personal computers
using a TM, thus proving that a PC can not be more powerful than a TM.

1.6 Universal Turing machines

Notice that every TM is computable itself, because one can specify a transition
function for some other TM that expects the specification of the initial TM and
its input as its input (this is no mistake!) in some reasonable encoding and then
interprets the encoded form of the initial TM to execute exactly the operations
that this TM would have executed on the original input.

Such a TM that simulates other TMs is called a universal Turing machine
or UTM. Alana itself is an example of a UTM, because we can give it a specifi-
cation of a TM (using a somewhat reasonable encoding described below) and it
will simulate the execution of this given TM. Yet, one could translate the oper-
ation of Alana to a TM, because the language that Alana is written in (Tcl/Tk)
is no more powerful (in computational terms) a concept than Turing machines
are. Translating Alana to a standard TM is cumbersome, but achievable. Have
a look at [Denning et al. 1978], where an example of a UTM is presented.

5



Alana, December 8, 2003

1.7 Other definitions of Turing machines

There exist many other essentially equivalent definitions of Turing machines.
They differ only in specification details, not in expressiveness or computation
power. For example, some of them allow the tape head not only to shift right
or left, but also to stay in place. This can of course be achieved in our model
by introducing additional states that shift the tape head back to where it came
from. Some machines use multiple tapes. This can be achieved in our model by
using more than one letter per cell and interpret the n-th letter as the content
of the n-th tape. For example, “gxa” could be interpreted as ‘g’ on tape 1, ‘x’
on tape 2 and ‘a’ on tape 3.

Also, without loss of generality, we may assume that the tape extends in-
finitely only to the right (or left), because we can interpret (for example) every
odd-numbered cell as extending to the left and every even-numbered cell as
extending to the right.

In complexity theory, nondeterministic TMs, where δ is a relation instead of
a function, play an important role, but standard TMs can be devised to handle
nondeterministic behaviour deterministically. [Linz 2001] contains a compre-
hensive overview of different definitions of TMs and their relations.

1.8 The halting problem

Consider the Turing machine M defined by

M = ({q0}, ∅, {2}, δ, q0,2, ∅)

where δ(q0,2) = (q0,2, R). It is obvious that this machine, once execution
starts, will never halt (much less accept any input, because there is not a single
accepting state), but move to the right indefinitely. In general, however, we
can not decide if a given Turing machine halts by simply looking at its defini-
tion. This was proved by Alan Turing, and the proof is given below. Because
every contemporary computer program (and computer) can be reduced to a
Turing machine, we can outline the proof in the more convenient notation of
Pascal and C-style programs. A more mathematical proof without the need to
resort to programming languages is given in [Denning et al. 1978].

Theorem 1 The problem whether a given Turing machine (or program) P will
halt on input I in finite time (the “halting problem”) is undecidable.

Proof: Let halt(program p, input I) be a function that expects the digital
presentation p of a computer program and some input i that is given to that
program as its arguments and returns (in finite time) yes if program p halts on
this input in finite time, no otherwise.

We can use this function in any program. Let program S be the following
program:

program S(program M, input N):
if (halt(M, N) == yes) {

infinite_loop;
} else {

print "That program never halts."
}

6



Alana, December 8, 2003

Program S expects the digital representation of a computer program as its
argument and checks if that program will halt on the given input N by calling
said function halt.

Now since program S is a program like any other program that our computer
can execute, it surely has a digital representation itself. The question now is
what does

halt(S, S)

return? (That is program S with the digital representation of itself as its
argument.) We know that the function halt can only return either yes or no.

Case 1 If halt(S, S) returns yes, it means that the call halt(M, N) in pro-
gram S also returned yes (because its arguments were also S and S). We
know that program S would then have branched into an infinite loop, so
our assumption that yes is returned must be wrong and yes can not be
returned.

Case 2 If halt(S, S) returns no, it means that the call halt(M, N) in pro-
grams S also returned no. Since programs S would simply print out “That
program never halts” and exit in this case, the call to halt(S, S) can-
not possibly return no, because we know that program S halts nearly
immediately in this case.

Since neither return value can be returned if function halt works correctly,
we conclude that our assumption must be wrong and such a function cannot
exist. For an overview of other undecidable problems, consult [Hopcroft et al.
2000].

1.9 Busy Beavers

Related to the halting problem is the quest for Busy Beavers. The problem
specification is this:

Given a fixed number n of states, a blank tape, and a finite tape
alphabet Γ, construct a transition function δ so that the resulting
Turing machine writes the maximum number of ‘1’s on the tape and
then halts.

You can freely choose the starting state and the set of accepting states. It
is usually implicitly assumed that Γ = {2, 1}.

The crux of the problem lies in the last requirement, namely that the ma-
chine has to halt! It is of course possible to examine every Turing machine
with n states that could be constructed via arbitrary transition functions over
the alphabet Γ (because it is finite), but the number of possible machines grows
rapidly with the number n of states, and for every candidate machine, it cannot
be seen beforehand whether it will halt eventually or simply loop forever.

Due to the undecidability of the halting problem, the Busy Beaver func-
tion B(n), returning the number of ‘1’s written on the tape by an n-state Busy
Beaver, is uncomputable. Therefore the predicate “an n-state Busy Beaver” is
sometimes incorrectly used as a synonym for “a (former) candidate for an n-state
Busy Beaver”. Figure 5 shows a candidate for a 5-state Busy Beaver, not count-
ing the accepting state. Amazingly, this machine – when started on a blank tape
in state q0 – halts with 4,098 ‘1’s written on the tape after 47,176,870 transitions.

7



Alana, December 8, 2003

q2

q3q0

q1

H

q4

2/1/R

1/1/L

1/1/R

2/1/R

1/1/L

2/1/L

2/1/R

1/2/L

1/2/L

2/1/R

Figure 5: A candidate for a 5-state Busy Beaver

2 The program Alana

2.1 Goals of the project

The main goal during the design and development stages of Alana was usability,
that is ease and comfort to use and work with Alana. Although there do exist
other Turing machine simulators on the Internet, they are difficult to use at
best. Most of them have serious or highly impractical limitations: [TM 1] only
provides 2,001 tape cells to work with, [TM 2] lets you only use a very narrow
range of tape symbols, [TM 3] works only with 3 preloaded examples, [TM 4]
requires a complicated and redundant input format, and [TM 5] is only available
for a fee. None were found that display the next step of the computation, or
provide back stepping functionality.

2.2 The user interface

Figure 6 shows a screen-shot of Alana that helps to explain the layout of the
program’s major components. The reader will immediately recognize a few cells
of the tape, buttons to move the tape head, and a text entry box to define
transitions. Also, a menu button is provided to change the current state of
the machine on-the-fly, and there are buttons to make the machine perform
the next step of its computation, which is always displayed beforehand in the
bottom right corner of the main window. Alternatively, a user can advise the
program to enter run-mode, i.e., to execute step after step without the need to
click on the button that would normally trigger this action. The scrollbar at
the bottom is used to adjust the speed of the tape head.

2.3 Syntax of Alana

To specify the transition
δ(q1, a) = (q2, b, R)

in Alana’s syntax, enter
(q1 a q2 b R)

in the transition entry box. For transitions of the form

δ(q1, a) = (q2, a, R)

8



Alana, December 8, 2003

Figure 6: A screen-shot of Alana

the shorter form
(q1 a q2 R)

can be used. For transitions of the form

δ(q1, a) = (q1, a, R)

you can use the even shorter version

(q1 a R) ,

but you can of course also use the longer versions (q1 a q1 R) or (q1 a q1 a R) if
you want.

To specify a set of accepting states, enter them delimited by curly braces,
for example:

{q5 q0 q1}
The starting state is delimited by brackets, like [q3]. The blank symbol is

denoted by ‘ ’ (underline). Every string of letters and digits not enclosed by
parentheses, braces or brackets is written directly onto the tape, followed by
a right shift of the tape head. After the input is read in completely, the tape
head is positioned on the first non-blank symbol on the tape if some initial tape
content was specified, and otherwise on any blank symbol. For example, the
5-state Busy Beaver candidate of Figure 5 was encoded for Alana as

(q0 _ q1 1 R) (q0 1 q2 L) (q1 _ q2 1 R) (q1 1 R)
(q2 _ q3 1 R) (q2 1 q4 _ L) (q3 _ q0 1 L) (q3 1 L)
(q4 _ H 1 R) (q4 1 q0 _ L) {H} [q0]

There is no need to specify the set Q of states or the tape alphabet Γ, because
these can both be deduced from the transition function. The blank symbol can
occur in the input and will be written on the tape just like every other symbol.

9



Alana, December 8, 2003

2.4 Included examples

Alana is distributed with a set of examples:

a2n.al a TM accepting only strings of the form a2n

, n ≥ 0

anbncn.al a TM accepting only strings of the form anbncn, n ≥ 0

binaryadd.al addition of two numbers in binary encoding

busy5.al a former candidate for a 5-state Busy Beaver writing 501 ‘1’s and
halting after 134,467 steps

copyinput.al copy a given string of ‘0’s and ‘1’s to the tape

divisibility.al divisibility testing of two numbers in unary encoding

multiplication.al multiplication of two numbers in unary encoding

primality.al test if a given number (in unary encoding) is prime

substract.al a TM subtracting two numbers in unary encoding

unaryadd.al a very simple example performing addition in unary encoding

3 Bibliography and resources

[Davis 2000] Martin Davis, The Universal Computer: The Road from Leibniz
to Turing, W. W. Norton & Company, 2000

[Davis et al. 1994] Martin D. Davis, Ron Sigal, Elaine J. Weyuker, Com-
putability, Complexity, and Languages, Academic Press, 2nd edition, 1994

[Denning et al. 1978] Peter J. Denning, Jack B. Dennis, and
Joseph E. Qualitz, Machines, Languages, and Computation, Prentice Hall,
1978

[Hopcroft et al. 2000] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ull-
man, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley Publishing, 2nd edition, 2000

[Linz 2001] Peter Linz, An introduction to formal languages and automata,
Jones and Bartlett Publishers, 3rd edition, 2001

[TM 1] http://userpages.wittenberg.edu/bshelburne/Turing.htm

[TM 2] http://math.hws.edu/TMCM/java/labs/xTuringMachineLab.html

[TM 3] http://www.turing.org.uk/turing/scrapbook/tmjava.html

[TM 4] http://www.cs.binghamton.edu/˜software/tm/tmdoc.html

[TM 5] http://www-csli.stanford.edu/hp/Version-turing-mac.html

This document was typeset in LATEX. Figures 1, 3 and 4 were created using
MetaPost. Figures 2 and 5 were created using Finomaton. Alana can be ob-
tained from

http://stud4.tuwien.ac.at/˜e0225855/alana/alana.html.

10


