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of symmetrical operations, where interdependencies prevent simultaneous execution of allthe operations in the set. Symmetry-breaking techniques enable the algorithm to select alarge subset of independent operations.Finding a maximal independent set (MIS) of a graph is a good example of the necessityof symmetry-breaking. At any step, a parallel MIS algorithm might have many candidatenodes to add to the independent set. However, due to adjacency constraints, not all ofthese nodes can be added simultaneously. A symmetry-breaking technique is thereforeneeded to �nd a large set of nodes to add, as has been done in previous parallel MISalgorithms [GS87,KW85,Lub86].Previous symmetry-breaking techniques have focused on randomization. It is oftendesirable, however, to have a deterministic algorithm. Karp and Wigderson [KW85], andLuby [Lub86] proposed methods to convert certain randomized algorithms into determin-istic ones. Their methods, however, signi�cantly increase the number of processors used.In many cases it is su�cient to break symmetry in sparse graphs. In this paper weintroduce deterministic symmetry-breaking techniques for sparse graphs that use only alinear number of processors. Our primary technique allows us to 3-color a rooted treein O(lg�n) time on a CREW PRAM. This technique was motivated by the deterministiccoin-ipping technique developed by Cole and Vishkin [CV86].We use our techniques to develop the linear-processor algorithms listed below.� For graphs whose maximum degree is �, we give an O(lg �(�2+lg�n))-time EREWPRAM algorithm for (�+1)-coloring and for �nding a maximal independent set.� For planar graphs, we give 7-coloring, MIS, and maximal matching algorithms thatrun in O(lg n) time on a CRCW PRAM and in O(lg2 n) time on an EREW PRAM.� We give an O(lg n lg�n)-time CRCW PRAM algorithm for 5-coloring an embeddedplanar graph.The above results improve the running time and processor bounds for the respectiveproblems. The best deterministic linear-processor algorithm for �nding MIS [GS87] runsin O(lg4 n) time on constant-degree graphs, compared to O(lg�n) time of our algorithm.2



The 5-coloring algorithms for planar graphs described in [BK87,Nao86] use O(lg3 n) timeand the same (large) number of processors as needed by Luby's MIS subroutine [Lub86].The O(lg3 n) running time of the maximal matching algorithm due to Israeli and Shiloach[IS86] can be reduced to O(lg2 n) in the restricted case of planar graphs, but our algorithmis faster.Although in this paper we have limited ourselves to the application of our techniques forthe design of parallel algorithms for the PRAMmodel of computation, the same techniquescan be applied in a distributed model of computation [Awe85,GHS83]. Moreover, the
(lg�n) lower bound for the MIS problem on a chain in the distributed model implies thatour symmetry-breaking technique is optimal in this model [Awe87,Lin87].Since we can 3-color a rooted tree in O(lg�n) time, it is natural to ask if a rooted treecan be 2-colored as quickly. We answer this question by giving an 
(lgn= lglgn) lowerbound for 2-coloring of a rooted tree. We also present an 
(lgn= lglg n) lower bound for�nding a maximal independent set in a general graph, thus answering the question posedby Luby [Lub86].This paper is organized as follows. In Section 2 we present de�nitions, notation, andcompuation model details. In Section 3 we present the algorithm for 3-coloring rootedtrees. In Section 4 we use this algorithm to (� + 1)-color constant-degree graphs. InSection 5 we use results of Section 4 to develop algorithms for planar graphs. In Section 6we prove the lower bounds mentioned earlier.2 PreliminariesThis section describes the assumptions about the computational model and introduces thenotation used throughout the paper. We consider simple, undirected graphs with n verticesand m edges. The maximum degree of a graph is denoted by �. The graph induced by aset of nodes X is denoted by G[X].Given a graph G = (V;E), we say that a subset of nodes I � V is independent if no twonodes in I are adjacent. A coloring of a graph G is an assignment C : V ! I+ of positive3



integers (colors) to nodes of the graph. A coloring is valid if no two adjacent nodes havethe same color. The ith bit in the color of a node v is denoted by Cv(i). A subset of edgesM � E is a matching if each pair of distinct edges in M have no nodes in common.The following problems are discussed in the paper:� The node-coloring problem: �nd a valid coloring of a given graph that uses at most�+1 colors.� The maximal independent set (MIS) problem: �nd a maximal independent set ofvertices in a given graph.� The maximal matching (MM) problem: �nd a maximal matching in a given graph.We make a distinction between unrooted and rooted trees. In a rooted tree, each nonrootnode knows which of its neighbors is its parent.The following notation is used:lg x = log2 xlg(1) x = lg xlg(i) x = lglg(i�1) xlg�x = minfij lg(i) x � 2gWe assume a PRAM model of computation [BH85,FW78] where each processor is capa-ble of executing simple word and bit operations. The word width is assumed to be O(lg n).The word operations we use include bit-wise boolean operations, integer comparisons, andunary-to-binary conversion. Each processor P has a unique identi�cation number O(lg n)bits wide, which we denote by PE-ID(P ). We use adjacency lists to represent the graph,assigning a processor to each edge and each node of the graph. We use exclusive-readexclusive-write (EREW) PRAM, concurrent-read exclusive-write (CREW) PRAM, andconcurrent-read concurrent-write (CRCW) PRAM, as appropriate. The write conicts inCRCW PRAM are assumed to be resolved arbitrarily. All lower bounds are proven for aCRCW PRAM with a polynomial number of processors.4



Procedure 6-Color-Rooted-Tree(T )L dlg ne;for all v 2 V in parallel do Cv  PE-ID(v);while L > 3 dofor all v 2 V in parallel do beginif v is the root then beginiv  0;bv  Cv(0);end;else beginiv  minfi j Cv(i) 6= Cparent(v)(i)g;bv  Cv(iv);end;Cv  ivbv;end;L dlgLe+ 1end;end. Figure 1: The Coloring Algorithm for Rooted Trees3 Coloring Rooted TreesThis section describes an O(lg�n)-time algorithm for 3-coloring rooted trees. We �rst de-scribe an O(lg�n)-time algorithm for 6-coloring rooted trees and then show how to trans-form a 6-coloring of a rooted tree into a 3-coloring in constant time.The procedure 6-Color-Rooted-Tree is shown in Figure 1. This procedure accepts arooted tree T = (V;E) and 6-colors it in time O(lg�n). Starting from the valid coloringgiven by the processor ID's, the procedure iteratively reduces the number of bits in the colordescriptions by recoloring each nonroot node v with the color obtained by concatenatingthe index of a bit in which Cv di�ers from Cparent(v) and the value of this bit. The root rconcatenates 0 and Cr[0] to form its new color.Theorem 1 The algorithm 6-Color-Rooted-Tree produces a valid 6-coloring of a tree inO(lg�n) time on a CREW PRAM using a linear number of processors.5



Proof : First we prove by induction that the coloring computed by the algorithm is valid,and then we prove the upper bound on the execution time.Assuming that the coloring C is valid at the beginning of an iteration, show that thecoloring at the end of the iteration is also valid. Let v and w be two adjacent nodes with vbeing the parent of w. By the algorithm, w chooses some index i such that Cv(i) 6= Cw(i)and v chooses some index j such that Cv(j) 6= Cparent(v)(j). The new color of w is hi; Cw(i)iand the new color of v is hj;Cv(j)i. If i 6= j, the new colors are di�erent and we are done.On the other hand, if i = j, then Cv(i) can not be equal to Cw(i) by the de�nition of i,and again the colors are di�erent. Hence, the validity of the coloring is preserved.Now we show that the algorithm terminates after O(lg�n) iterations. Let Lk denotethe number of bits in the representation of colors after k iterations. For k = 1 we haveL1 = dlgLe+ 1� 2dlgLeif dlgLe � 1.Assume for some k we have Lk�1 � 2dlg(k�1)Le and dlg(k)Le � 2. ThenLk = dlgLk�1e + 1� dlg(2 lg(k�1)L)e+ 1� 2dlg(k)LeTherefore, as long as dlg(k)Le � 2, Lk � 2dlg(k)Le:Hence, the number of bits in the representation of colors Lk decreases until, after O(lg�n)iterations, dlg(k)Le becomes 1 and Lk reaches the value of 3 (the solution of L = dlgLe+1).Another iteration of the algorithm produces a 6-coloring: 3 possible values of the index ivand 2 possible values of the bit bv. The algorithm terminates at this point.Using concurrent-read, each node determines its parent's color in constant time. Thenthe new color is computed independently by every node, again in constant time. Therefore,each iteration takes constant time and the algorithm uses O(lg�n) time overall. Note, that6



no concurrent-write capabilities are required; for constant-degree trees the concurrent-readcapability is not needed either.We now describe the algorithm 3-Color-Rooted-Tree which 3-colors a rooted tree. Thealgorithm �rst applies 6-Color-Rooted-Tree to produce a valid 6-coloring of the tree. Thenit executes three stages, each time reducing the number of colors by one.Each stage works as follows. By shifting down the coloring we mean recoloring eachnonroot node with the color of its parent and recoloring the root with a color di�erent fromits current color. To remove the color c 2 f4; 5; 6g, �rst shift down the current coloring.Then, recolor each node of color c with the smallest color di�erent from its parents's andchildren's colors.Theorem 2 Given a rooted tree T , the algorithm 3-Color-Rooted-Tree constructs a valid3-coloring of T using n processors and O(lg�n) time on a CREW PRAM.Proof : After a shift of colors, the children of any node have the same color. Thus eachnode is adjacent to nodes of at most two di�erent colors. Therefore, each stage of thealgorithm reduces the number of colors by one, as long as the number of colors is greaterthan three. Each stage takes a constant time on a CREW PRAM. The theorem followsfrom Theorem 1.To describe the subsequent algorithms, we introduce the concept of a pseudoforest[PQ82]. A pseudoforest of G = (V;E) is a directed graph G0 = (V;E0), such that E0 � Eand outdegree of any node is at most one. A maximal pseudoforest of G = (V;E) is adirected graph G0 = (V;E0), such that E0 � E and outdegree of any node is one, unlessthis node has zero-degree in G. Nodes with zero out-degree are roots of the pseudoforest.We assume that graphs are represented by adjacency lists, and therefore a maximal pseud-oforest can be constructed in (parallel) constant time by choosing an arbitrary adjacentedge for every node and directing this edge outwards.The coloring algorithms presented in this section work for pseudoforests as well as forrooted trees. Therefore, a pseudoforest can be 3-colored in O(lg�n) time on an CRCWPRAM using a linear number of processors. We shall call the procedure for 3-coloring7



pseudoforests 3-Color-Pseudoforest. Note that an odd cycle is a pseudoforest that can notbe colored in less than 3 colors, and therefore the number of colors used by the procedure3-Color-Pseudoforest is optimal in this case.Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic time.For example, one can use tree�x operations [LM86,MR85] to compute the distance fromeach node to the root, and color even level nodes with one color and odd level nodes withthe other color. It is harder to �nd a 2-coloring of a rooted tree in parallel, however, than itis to �nd a 3-coloring of a rooted tree. In section 6 we show a lower bound of 
(lgn= lglg n)on 2-coloring of a directed list on a CRCW PRAM with a polynomial number of processors,which implies the same lower bound for rooted trees.4 Coloring Constant-Degree GraphsThe method for coloring rooted trees, described in the previous section, is a general-ization of the deterministic coin-ipping technique described in [CV86]. The method canbe generalized even further [GP87b] to color constant-degree graphs in a constant numberof colors. In the generalized algorithm, a current color of a node is replaced by a new colorobtained by looking at each neighbor, appending the index of a bit in which the currentcolor of the node is di�erent from the neighbor's color to the value of the bit in the nodecolor, and concatenating the resulting strings. This algorithm runs in O(lg�n) time, butthe number of colors, although constant as a function of n, is exponential in the degree ofthe graph.In this section we show how to use the procedure 3-Color-Pseudoforest, described inthe previous section, to color a constant-degree graph with (�+1) colors.The algorithm Color-Constant-Degree-Graph which colors a constant-degree graphG =(V;E) with (�+1) colors is presented in Figure 2. The algorithm consists of two phases.In the �rst phase we iteratively construct a maximal pseudoforest and remove its edges.This phase continues until no edges remain, at which point we color all the nodes with onecolor. Then we color all the pseudoforests with 3 colors in parallel.8



Procedure Color-Constant-Degree-Graph.E 0 E;for i = 0 to � do begin hh the �rst phaseiifor all v 2 V in parallel doif 9(v; u) 2 E 0 then Ei  Ei + (v; u) ;E 0  E 0 �Ei; hh Ei are edges of a maximal pseudoforest iiend;for all v 2 V in parallel do hh initial coloringiiC(v) 1;for all 0 � i � � in parallel do hh color the pseudoforestsiiCi  3-Color-Pseudoforest(V;Ei);for i � to 0 do begin hh the second phaseiiE0 E 0 + Ei;for k  2 to 3, j  1 to �+1 doV 0  V ;for all v 2 V 0 in parallel doif C(v) = j and Ci(v) = kthen beginC(v) maxff1; 2; . . .�+1g�fC(w) j (v; w) 2 E0gg;V 0  V 0 � fvg;end;end;end;end;end. Figure 2: The Coloring Algorithm for Constant Degree Graphs
9



In the second phase we iteratively return the edges of the current pseudoforest, eachtime recoloring the nodes to maintain a consistent coloring. At the beginning of eachiteration of this phase, the edges E 0 of the current pseudoforest are added, making theexisting (�+1)-coloring inconsistent. The forest E0 is already colored with 3 colors. Now,each node has two colors { one from the coloring at the previous iteration and one fromthe coloring of the forest. The pairs of colors form a valid 3(�+1)-coloring of the graph.The iteration �nishes by enumerating the color classes, recoloring each node of the currentcolor with a color from f0; . . . ;�g that is di�erent from the colors of its neighbors. Wecan recolor all the nodes of the same color in parallel because they are independent.Theorem 3 The algorithm Color-Constant-Degree-Graph colors the graph with (�+1)colors and runs in O(lg�(�2 + lg�n)) time on an EREW PRAM using a linear numberof processors.Proof : At each iteration all edges of the maximal pseudoforest are removed. The de�nitionof a maximal pseudoforest implies that each node that still has neighbors in the beginningof an iteration has at least one edge removed during that iteration and therefore its degreedecreases. After at most � iterations, E0 is empty. The running time of each iterationis determined by the time required to select an unused edge out of an edge list. On anEREW PRAM, an unused edge can be selected in O(lg �) time. The pseudoforests areedge-disjoint and therefore can be colored in parallel. By Theorem 2, this takesO(lg � lg�n)time on an EREW PRAM. The lg� factor appears because we do not use the concurrent-read capability; a node must broadcast its color to its children using, for example, recursivedoubling. The total time bound for the �rst stage is therefore O(lg �(�+ lg�n)).The second phase terminates in at most � iterations as well. For each pseudoforestwe iterate over all the colors. Since in this section we assume that � is a constant, eachiteration can be done in O(lg �) time using word operations; for example, we can representcolors as bit vectors and use exclusive-or �nction together with the recursive doublingtechnique. Hence, one iteration of the second phase takes O(� lg �) time, leading to anoverall O(lg �(�2+ lg�n)) running time for the second stage of the algorithm and for thealgorithm itself. 10



Given a (� + 1)-coloring of a graph, we can �nd an MIS of the graph by iteratingover the colors, taking all the remaining nodes of the current color, adding them to theindependent set, and removing them and all their neighbors from the graph. (We referto this procedure as Constant-Degree-MIS in the subsequent sections.) The running timeof this algorithm is dominated by the running time of the Color-Constant-Degree-Graphprocedure. The following theorem states this fact formally.Theorem 4 An MIS in constant-degree � graphs can be found in O(lg �(�2+lg�n)) timeon an EREW PRAM using a linear number of processors.Remark: The proofs of Theorems 3 and 4 imply that the algorithms Color-Constant-Degree-Graph and Constant-Degree-MIS have a polylogarithmic running times for graphswith polylogarithmic maximum degrees. For graphs with maximum degree � = !(lg n),we can use the following algorithm. First, the graph is partitioned into two subgraphswith approximately equal number of nodes, and the subgraphs are recursively colored in�+1 colors. Then we iterate through all the colors of one of the subgraphs, recoloring eachnode with a color di�erent from the colors of all of its neighbors. We can �nd this colorusing sorting in O(lg �) [Col86]. This algorithm colors a graph with a maximum degreeof � with �+1 colors in O(� lg � lgn) time.The above algorithms can be implemented in the distributed model of computation[Awe85,GHS83], where processors have �xed connections determined by the input graph.The algorithms in the distributed model achieve the same O(lg�n) bound as in the EREWPRAMmodel. It was recently shown that 
(lg�n) time is required in the distributed modelto �nd a maximal independent set on a chain [Awe87,Lin87]. Our algorithms are thereforeoptimal (to within a constant factor) in the distributed model.In [Sha86], at forests are used to develop a linear processor constant-degree MISalgorithm which used time exponential in �. A forest is at if each of its trees, whenproperly oriented, has a height of at most 1, and any zero-degree node in the forest is zero-degree in the input graph. Using the techniques introduced in this section, we can �nd aat forest of a graph by proceeding as follows. Find a maximal pseudoforest P = G(V;E0).Note that there exists a at forest F = (V;E00), such that E00 � E0. Use the algorithm11



3-Color-Pseudoforest to �nd a 3-coloring of the pseudoforest P and subsequently �nd anMIS I of P . Each node v 62 I adds an edge (v; u) to E00 such that u 2 I. Each node in Iwith no adjacent edges in E00, but some adjacent edges in E0, chooses one adjacent edgein E0 and adds it to E00. The graph F induced by the edges in E00 is almost a at forest{ each tree has a height of at most 2. Now we split trees of height 2 in F into trees ofheight one to produce a at forest. All operations take constant time except for �nding the3-coloring of P , which takes O(lg�n) time. Therefore, we can �nd a at forest in O(lg�n)time on a CREW PRAM using n processors.5 Coloring and Matching in Planar GraphsEuler's formula [Har72] implies that every planar graph has a constant fraction of nodes ofdegree 6 or less. In this section we use this property in conjunction with the techniques de-veloped above to construct e�cient algorithms for coloring and �nding maximal matchingsin planar graphs.First we present the algorithm 7-Color-Planar-Graph which �nds a 7-coloring of aplanar graph in O(lg n) time. The algorithm is shown in Figure 3. The �rst stage of thealgorithm separates the nodes of the graph into sets Vi, such that the degree of any nodev 2 Vi in G[Vi+Vi+1+Vi+2; . . .] is at most 6. Then, the algorithm colors all the subgraphsinduced by the node-sets fVig. These graphs are node-disjoint and therefore the coloringcan be done in parallel. The last stage of the algorithm adds the subgraphs back in reverseorder, updating the coloring.Theorem 5 The algorithm 7-Color-Planar-Graph constructs a valid 7-coloring using nprocessors and O(lg n) time on a CRCW PRAM.Proof : By Euler's formula at least a constant fraction of any planar graph's nodes areof degree 6 or less. Therefore, the �rst stage partitions G's nodes into at most O(lg n)sets Vi. We use concurrent reads and writes to determine whether the degree of a nodeis at most 6, and hence each iteration of the �rst stage is done in constant time. Bytheorem 3, the second stage uses only O(lg�n) time. In the ith iteration of the third stage,12



Procedure 7-Color-Planar-GraphV 0  V ;V1; V2; . . .Vdlgne  ;;i 0;while V 0 6= ; for all v 2 V 0 do in parallel hh �rst stage iiif Degree(v) � 6then beginVi  Vi + v;V 0  V 0 � v;end;i i+ 1;end;for all 0 � i � � in parallel do hh color the pseudoforestsiiEi  f(v; w) j v; w 2 Vi ; (v; w) 2 Eg;Ci  Color-Constant-Degree-Graph(Vi; Ei);end;for i i� 1 to 0 do hh second stage iiV 00  Vifor j  1 to 7 dofor all v 2 V 00 do in parallelif Cv = jthen beginCv  maxff1 . . .7g � fCw j w 2 V 0; (v; w) 2 Eg g;V 00 = V 00 � v;end;end;V 0  V 0 + Vi;end. Figure 3: The 7-Coloring Algorithm For Planar Graphs13



the graph G[Vi] is already 7-colored and the maximum degree of each node in Vi in thegraph G[Vi + Vi+1 + Vi+2 + . . .] is 6. Only constant time is then needed to add in Vi andproduce a valid 7-coloring of G[Vi+Vi+1+Vi+2+ . . .]. Therefore, only O(lg n) time is usedin all three stages.Remark: If at the �rst stage, instead of removing from the graph all the nodes with degreeof at most 6, we remove all nodes of average degree or less, the algorithm described aboveruns in polylogarithmic time for any graph G such that the average degree of any node-induced subgraph G0 of G is polylogarithmic in the size of G0. This class contains manyimportant subclasses including graphs that are unions of a polylogarithmic number ofplanar graphs (i.e. graphs with polylogarithmic thickness [Har72]).Given a valid 7-coloring of a planar graph, we can �nd an MIS in the graph by iteratingthrough colors as in our Constant-Degree-MIS algorithm. With concurrent reads andwrites, only constant time is needed for each color class. Hence, we can �nd an MIS in aplanar graph in O(lg n) time on a CRCW PRAM using a linear number of processors.After the planar graph is 7-colored, we can �nd MIS in the graph by iterating throughcolors in the same way it is done in the Constant-Degree-MIS procedure. Hence, MIS inplanar graph can be found in O(lg n) time on a CRCW PRAM using a linear number ofprocessors.The deterministic parallel algorithms for 5-coloring planar graphs, described in [BK87]and in [Nao86], use 
(lg3 n) time and O(n3) processors. These algorithms require a largenumber of processors because they use Luby's MIS algorithm [Lub86]. Using the Constant-Degree-MIS algorithm described in the previous section, we can reduce the number ofprocessors to linear, but the running time will still be O(lg3 n lg�n) [GP87a,Gol87].The 5-coloring algorithm presented below is essentially a parallelization of the sequen-tial algorithms in [CNS81,MST80]. Given embedding (which can be computed in O(lg2 n)time [KR86]), our algorithm runs in O(lg n lg�n) time on a CRCW PRAM using a linearnumber of processors. Given a graph G = (V;E), the algorithm �nds a special large in-dependent set I of nodes in G, merges some of the neighbors of I (as described below)and removes the nodes in I to create a new graph G0, recursively colors G0, and uses this14



coloring to color the nodes in G.The special independent set I is constructed as follows. Let Q be the set of all nodes inG of degree greater than 42. Let V4 be the set of all nodes of degree 4 or less. Let V5 and V6be the set of all nodes of degree 5 with at most one neighbor in Q and the set of all nodesof degree 6 with no neighbors in Q, respectively. Let S = V4 [ V5 [ V6. Let Gs = (S;Es)be the graph induced by the nodes in S in the graph which is the square of G[V �Q] Theset I is a maximal independent set in the graph Gs [ G[V �Q]. Since Gs and G[V � Q]are of constant degree, we can �nd I using the procedure Constant-Degree-MIS.In order to construct the graph G0, the algorithm proceeds as follows. Start withG0 = G. For each node in I \ V5 we �nd two of its non-adjacent neighbors that have lowdegree (42 or less), and merge them into a single supernode. For each node in I \ V6 weeither merge three of its non-adjacent neighbors into a single supernode, or merge two non-adjacent pairs of its neighbors into two supernodes. The embedding information is usedas in [CNS81,MST80] to �nd the neighbors that can be merged while preserving planarityafter all nodes in I are removed. Then we remove all the nodes in I to get the graph G0.After recursively 5-coloring the graph G0, we obtain the coloring of G as follows. Firstwe color all the nodes of G that correspond to nodes or supernodes of G0 with the samecolor they were colored in G0. Now we add all the nodes in I and in parallel color everyone of them with a color di�erent from the colors of its neighbors.In order to bound the running time of the 5-coloring algorithm we need the followinglemma, which is similar to Lemma 3 in [CNS81].Lemma 6 The size of S = V4 [ V5 [ V6 is at least a constant fraction of the total numberof nodes in the graph.Proof : Let R = V � S. Denote by si and ri the number of nodes of degree i in the sets Sand R, respectively. Let r� =P42i=7 ri, and let rQ = P1i=43 ri. By Euler's formula, rQ � 643n.We prove the lemma by a counting argument. De�nitions of r5 and r6 imply that15



2r5 + r6 � P1i=43 iri. Euler's formula implies that 6n � m, therefore6n � 6Xi=1 isi + 5r5 + 6r6 + 42Xi=7 iri + 1Xi=43 iri� 6Xi=1 isi + 7r5 + 7r6 + 42Xi=7 iri� 7r5 + 7r6 + 7 42Xi=7 ri� 7( 6Xi=1 si + r5 + r6 + r� + rQ)� 7 6Xi=1 si � 7rQ� 7n� 7jSj � 7 � 643nThus jSj � n301.Theorem 7 Given an embedded planar graph, the algorithm 5-Color-Planar-Graph 5-colors it using a linear number of processors in O(lg�n lgn) time on a CRCW PRAM,and O((lg�n+ lg�) lgn) time on an EREW PRAM.Proof : Correctness of the algorithm follows from [CNS81] and from the fact that the nodesin I are independent in Gs [G[V �Q]Lemma 6 implies that the size of S is 
(n). The graph Gs has a constant maximumdegree and hence the size of the set I is 
(n) as well. Therefore the depth of recursion isat most O(lg n).On a CRCW PRAM, we can �nd S and Q in constant time as in the algorithm 7-Color-Planar-Graph. The construction of Gs [ G takes constant time because Gs hasconstant degree. The algorithm Constant-Degree-MIS �nds I in O(lg�n) time. In constanttime nodes in I can merge appropriate neighbors and delete themselves from G formingG0. Edge lists in G0 need not be compacted when we are using the CRCW PRAM. Afterrecursively coloring G0, we can color G in constant time.16



On the EREW PRAM, O(lg �) additional time per recursion level is needed since wemust compact edge lists of G0 (so that the set S in G0 can be found in constant time).Remark: Chrobak, Diks, and Hagerup [CDH87] have recently improved the result of The-orem 7 by giving an algorithm for 5-coloring planar graphs that runs in O(lg�n lgn) timeon an EREW PRAM and does not need an embedding.Using the techniques described in this section, it is easy to construct a fast algorithmfor �nding a maximal matching (MM) in a planar (or a constant-degree) graph. As in the7-coloring algorithm, the �rst stage of the MM algorithm separates the nodes of the graphinto sets Vi, such that the degree of any node v 2 Vi in G[Vi + Vi+1 + Vi+2; . . .] is at most6. Then the graphs fG[Vi]g are colored in parallel. The second stage of the algorithmrecursively �nds MM in the graph G[V �V1] and removes the matched nodes to get G[V 0],where V 0 is the set of the unmatched nodes. The graph G[V 0] has no edges and the nodesV1 in the graph G[V 0 + V1] have maximum degree of 6. Hence, in 7 iterations over thecolors of G[V1] we can �nd the MM of G.Theorem 8 A maximal matching in a planar graph can be found in O(lg n) time on aCRCW PRAM using a linear number of processors.Remark: Using Euler's formula, we can extend our algorithms for 7-coloring and MIS inplanar graphs to graphs of bounded-genus . We apply the algorithm 7-Color-Planar-Graph as before when there are at least c nodes remaining in the residual graph, for someconstant c. The Heawood map-coloring theorem states that any graph can be coloredwith O() colors, and its proof implies a polynomial time algorithm for �nding such acoloring [Har72]. Therefore, when less than c nodes remain in the residual graph, wesequentially color it with O(p) colors. With only a polynomial in  of additional time,we can then O(p)-color the graph using the same time and number of processors as fora 7-coloring planar graph. The related result for MIS on bounded-genus graphs follows asbefore. 17



6 Lower BoundsIn this section we prove two lower bounds for a CRCW PRAM with a polynomial numberof processors:� Finding a maximal independent set in a general graph takes 
(lgn= lglg n) time.� 2-coloring a directed list takes 
(lgn= lglgn) time.The �rst lower bound complements the O(lg n) CRCW PRAM upper bound for theMIS problem that is achieved by Luby's algorithm [Lub86]. The second lower boundcomplements Theorem 2 in this paper.Theorem 9 The running time of any MIS algorithm on a CRCW PRAM with a polyno-mial number of processors is 
(lgn= lglgn).Proof : Given an instance of MAJORITY, we construct an instance of MIS in constantCRCW PRAM time. MAJORITY is harder that PARITY [FSS81], which was proven totake 
(lgn= lglg n) time on a CRCW PRAM in [Bea86,BH87]. Therefore the lower boundclaimed in the theorem follows.Let x1; x2; . . . ; xn be an instance of MAJORITY. We construct a complete bipartitegraph G = (V;E) with nodes corresponding to `0' bits of the input on one side and nodescorresponding to `1' bits on the other side.V = f1; . . . ; ngE = f(i; j) j xi 6= xjgTo construct this graph, assign a processor Pij for each pair 1 � i < j � n. Then, eachprocessor Pij writes 1 into location Mij if xi 6= xj and writes 0 otherwise.A maximal matching in a complete bipartite graph is also a maximum one. By con-structing a maximal independent set in the line-graph G0 of G, one can �nd a maxi-mal matching in G. To construct the graph G0 assign a processor Pijk for each distincti; j; k � n. Each Pijk writes 1 into location M(i;j);(j;k) if Mij =Mjk = 1 and 0 otherwise.18



The MAJORITY equals to 1 if and only if there is an unmatched node i 2 G such thatxi = 1, which can be checked on a CRCW PRAM in constant time.Theorem 10 The time to 2-color a directed list on a CRCW PRAM with a polynomialnumber of processors is 
(lgn= lglgn).Proof : We show a constant time reduction from PARITY to the 2-coloring of a directedlist. First, we show how to construct, in constant time, a directed list with elementscorresponding to all the input bits xi with value of 1. Let x1; x2; . . . ; xn be an instance ofPARITY. Associate a processor Pi with each input cell Mi that initially holds the value ofxi. Associate a set of processors P jki with each index i; 1 � k � j < i. In one step, eachprocessor P jki reads the value of Mi�k and, if it equals to 1, writes 1 into M ji , e�ectivelycomputing the OR-function on the input values xi�j ; xi�j+1; . . . ; xi�1. Assign a processorP ji to each M ji . Each processor P ji reads M ji and M j+1i and writes j into M 0i if and onlyif M ji 6= M j+1i . Set M 00 = 0 and if xi = xi�1 = 1, set M 0i = 1. It can be seen that for all1 � i � n, M 0i holds maxfj j j < i; xj = 1g.We have constructed a directed list with elements corresponding to all the input bitsxi with value of 1. Assume this list is 2-colored. Then PARITY equals to 1 if and onlyif both ends of the list are colored with the same color, which can be checked in constanttime.7 Conclusion and Open ProblemsWe have presented a fast technique for breaking symmetry in parallel and have shown howto apply this technique to improve the running times and processor bounds of a number ofimportant parallel algorithms. We beleive that the e�eciency of this technique, combinedwith the simplicity of its implementation, makes it an important tool in designing parallelalgorithms.Our results motivate the following open questions.19



� We have proved a lower bound for MIS in general graphs. What is the lower boundfor MIS in planar graphs ?� Beame has proposed the following algorithm for coloring rooted trees of constant de-gree on PRAM. Run the algorithm 3-Color-Rooted-Tree for O(lg lg�n) steps. Next,each processor collects the colors of all the descendants on distance O(lg�n) or lessand uses this information and a precomputed lookup table (of size O(lg�n lg lg�n))to compute its �nal color. Given an 
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