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Abstract

We describe efficient deterministic techniques for breaking symmetry in parallel.
These techniques work well on rooted trees and graphs of constant degree or genus.
Our primary technique allows us to 3-color a rooted tree in O(lg*n) time on an EREW
PRAM using a linear number of processors. We use these techniques to construct fast
linear processor algorithms for several problems, including (A + 1)-coloring constant-
degree graphs and 5-coloring planar graphs. We also prove lower bounds for 2-coloring
directed lists and for finding maximal independent sets in arbitrary graphs.

1 Introduction

Some problems for which trivial sequential algorithms exist appear to be much harder
to solve in a parallel framework. When converting a sequential algorithm to a parallel
one, at each step of the parallel algorithm we have to choose a set of operations which

may be executed in parallel. Often, we have to choose these operations from a large set
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of symmetrical operations, where interdependencies prevent simultaneous execution of all
the operations in the set. Symmetry-breaking techniques enable the algorithm to select a

large subset of independent operations.

Finding a maximal independent set (MIS) of a graph is a good example of the necessity
of symmetry-breaking. At any step, a parallel MIS algorithm might have many candidate
nodes to add to the independent set. However, due to adjacency constraints, not all of
these nodes can be added simultaneously. A symmetry-breaking technique is therefore
needed to find a large set of nodes to add, as has been done in previous parallel MIS

algorithms [GS87, KW85,Lub86].

Previous symmetry-breaking techniques have focused on randomization. It is often
desirable, however, to have a deterministic algorithm. Karp and Wigderson [KW85], and
Luby [Lub86] proposed methods to convert certain randomized algorithms into determin-

istic ones. Their methods, however, significantly increase the number of processors used.

In many cases it is sufficient to break symmetry in sparse graphs. In this paper we
introduce deterministic symmetry-breaking techniques for sparse graphs that use only a
linear number of processors. Our primary technique allows us to 3-color a rooted tree

in O(lg"n) time on a CREW PRAM. This technique was motivated by the deterministic
coin-flipping technique developed by Cole and Vishkin [CV86].

We use our techniques to develop the linear-processor algorithms listed below.

e For graphs whose maximum degree is A, we give an O(lg A(A%+1g"n))-time EREW
PRAM algorithm for (A+1)-coloring and for finding a maximal independent set.

e For planar graphs, we give 7-coloring, MIS, and maximal matching algorithms that
run in O(Ign) time on a CRCW PRAM and in O(lg”n) time on an EREW PRAM.

e We give an O(lgnlg™n)-time CRCW PRAM algorithm for 5-coloring an embedded
planar graph.

The above results improve the running time and processor bounds for the respective

problems. The best deterministic linear-processor algorithm for finding MIS [GS87] runs

in O(lg*n) time on constant-degree graphs, compared to O(lg*n) time of our algorithm.
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The 5-coloring algorithms for planar graphs described in [BK87,Nao86] use O(lg®n) time
and the same (large) number of processors as needed by Luby’s MIS subroutine [Lub86].

The O(lg” n) running time of the maximal matching algorithm due to Israeli and Shiloach

[IS86] can be reduced to O(lg* n) in the restricted case of planar graphs, but our algorithm

is faster.

Although in this paper we have limited ourselves to the application of our techniques for
the design of parallel algorithms for the PRAM model of computation, the same techniques
can be applied in a distributed model of computation [Awe85,GHS83]. Moreover, the
Q(lg"n) lower bound for the MIS problem on a chain in the distributed model implies that

our symmetry-breaking technique is optimal in this model [Awe87,Lin87].

Since we can 3-color a rooted tree in O(lg™n) time, it is natural to ask if a rooted tree
can be 2-colored as quickly. We answer this question by giving an Q(lgn/lglgn) lower
bound for 2-coloring of a rooted tree. We also present an Q(lgn/lglgn) lower bound for
finding a maximal independent set in a general graph, thus answering the question posed

by Luby [Lub86].

This paper is organized as follows. In Section 2 we present definitions, notation, and
compuation model details. In Section 3 we present the algorithm for 3-coloring rooted
trees. In Section 4 we use this algorithm to (A + 1)-color constant-degree graphs. In
Section 5 we use results of Section 4 to develop algorithms for planar graphs. In Section 6

we prove the lower bounds mentioned earlier.

2 Preliminaries

This section describes the assumptions about the computational model and introduces the
notation used throughout the paper. We consider simple, undirected graphs with n vertices
and m edges. The maximum degree of a graph is denoted by A. The graph induced by a
set of nodes X is denoted by G[X].

Given a graph G = (V, E), we say that a subset of nodes I C V is independent if no two

nodes in I are adjacent. A coloring of a graph G is an assignment C' : V — It of positive
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integers (colors) to nodes of the graph. A coloring is valid if no two adjacent nodes have

the same color. The ' bit in the color of a node v is denoted by C,(7). A subset of edges

M C FE is a matching if each pair of distinct edges in M have no nodes in common.

The following problems are discussed in the paper:

e The node-coloring problem: find a valid coloring of a given graph that uses at most

A-+1 colors.

e The maximal independent set (MIS) problem: find a maximal independent set of

vertices in a given graph.

e The maximal matching (MM) problem: find a maximal matching in a given graph.

We make a distinction between unrooted and rooted trees. In a rooted tree, each nonroot

node knows which of its neighbors is its parent.

The following notation is used:

._

02
8
I

log, «

1gV) 2

lg x
gz = lglgYa
lg™x min{i|1g® 2z < 2}

We assume a PRAM model of computation [BH85,FWT78] where each processor is capa-
ble of executing simple word and bit operations. The word width is assumed to be O(lgn).
The word operations we use include bit-wise boolean operations, integer comparisons, and
unary-to-binary conversion. Each processor P has a unique identification number O(lgn)
bits wide, which we denote by PE-ID(P). We use adjacency lists to represent the graph,
assigning a processor to each edge and each node of the graph. We use exclusive-read
exclusive-write (EREW) PRAM, concurrent-read exclusive-write (CREW) PRAM, and
concurrent-read concurrent-write (CRCW) PRAM, as appropriate. The write conflicts in
CRCW PRAM are assumed to be resolved arbitrarily. All lower bounds are proven for a
CRCW PRAM with a polynomial number of processors.

4



Procedure 6-Color-Rooted-Tree(T)
L« [lgn];
for all v € V in parallel do C, « PE-ID(v);
while L > 3 do
for all v € V in parallel do begin
if v is the root then begin
1y — 0
b, < Cy(0);
end;
else begin

iy = min{i [ Cy(4) # Chapent(oy (1) 13
bv — Cu(iv);
end;
Cly  1yby;
end;
L+ lglL]l+1
end;
end.

Figure 1: The Coloring Algorithm for Rooted Trees

3 Coloring Rooted Trees

This section describes an O(lg"n)-time algorithm for 3-coloring rooted trees. We first de-
scribe an O(lg™n)-time algorithm for 6-coloring rooted trees and then show how to trans-

form a 6-coloring of a rooted tree into a 3-coloring in constant time.

The procedure 6-Color-Rooted-Tree is shown in Figure 1. This procedure accepts a
rooted tree T = (V, E) and 6-colors it in time O(lg™n). Starting from the valid coloring
given by the processor ID’s, the procedure iteratively reduces the number of bits in the color
descriptions by recoloring each nonroot node v with the color obtained by concatenating

the index of a bit in which C, differs from C,cn(v) and the value of this bit. The root r

concatenates 0 and C,[0] to form its new color.

Theorem 1 The algorithm 6-Color-Rooted-Tree produces a valid 6-coloring of a tree in
O(lg™n) time on @ CREW PRAM using a linear number of processors.
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Proof: First we prove by induction that the coloring computed by the algorithm is valid,

and then we prove the upper bound on the execution time.

Assuming that the coloring C' is valid at the beginning of an iteration, show that the
coloring at the end of the iteration is also valid. Let v and w be two adjacent nodes with v
being the parent of w. By the algorithm, w chooses some index ¢ such that C,(¢) # C,(7)
and v chooses some index j such that Cy(j) # Cparene(v)(J). The new color of w is (i, Cy(2))
and the new color of v is (j,Cy,(j)). If i # j, the new colors are different and we are done.
On the other hand, if ¢+ = j, then C,(¢) can not be equal to C, (i) by the definition of 1,

and again the colors are different. Hence, the validity of the coloring is preserved.

Now we show that the algorithm terminates after O(lg™n) iterations. Let L, denote

the number of bits in the representation of colors after k iterations. For k = 1 we have

Ly

if [lgL] > 1.

Assume for some k we have L,_; < Z[Ig(k_l) L] and ﬂg(k) L] > 2. Then
Mg(21g*Y 1)1 + 1
2Mg™ L]

IAIA

Therefore, as long as [lg® L] > 2,
L < 2[1g®™ L.

Hence, the number of bits in the representation of colors Lj decreases until, after O(1g™n)

iterations, [1g® L] becomes 1 and Ly reaches the value of 3 (the solution of L = [lg L]+1).
Another iteration of the algorithm produces a 6-coloring: 3 possible values of the index 1,

and 2 possible values of the bit b,. The algorithm terminates at this point.

Using concurrent-read, each node determines its parent’s color in constant time. Then
the new color is computed independently by every node, again in constant time. Therefore,

each iteration takes constant time and the algorithm uses O(lg™n) time overall. Note, that
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no concurrent-write capabilities are required; for constant-degree trees the concurrent-read

capability is not needed either. |

We now describe the algorithm 3-Color-Rooted-Tree which 3-colors a rooted tree. The
algorithm first applies 6-Color-Rooted-Tree to produce a valid 6-coloring of the tree. Then

it executes three stages, each time reducing the number of colors by one.

Each stage works as follows. By shifting down the coloring we mean recoloring each
nonroot node with the color of its parent and recoloring the root with a color different from
its current color. To remove the color ¢ € {4,5,6}, first shift down the current coloring.
Then, recolor each node of color ¢ with the smallest color different from its parents’s and

children’s colors.

Theorem 2 Guen a rooted tree T, the algorithm 3-Color-Rooted-Tree constructs a valid

3-coloring of T using n processors and O(lg™n) time on a CREW PRAM.

Proof: After a shift of colors, the children of any node have the same color. Thus each
node is adjacent to nodes of at most two different colors. Therefore, each stage of the

algorithm reduces the number of colors by one, as long as the number of colors is greater
than three. Each stage takes a constant time on a CREW PRAM. The theorem follows

from Theorem 1. |

To describe the subsequent algorithms, we introduce the concept of a pseudoforest
[PQ82]. A pseudoforest of G = (V, E) is a directed graph G' = (V, E’), such that E' C E
and outdegree of any node is at most one. A mazimal pseudoforest of G = (V, E) is a
directed graph G’ = (V, E'), such that E’ C E and outdegree of any node is one, unless
this node has zero-degree in G. Nodes with zero out-degree are roots of the pseudoforest.
We assume that graphs are represented by adjacency lists, and therefore a maximal pseud-
oforest can be constructed in (parallel) constant time by choosing an arbitrary adjacent

edge for every node and directing this edge outwards.

The coloring algorithms presented in this section work for pseudoforests as well as for
rooted trees. Therefore, a pseudoforest can be 3-colored in O(lg™n) time on an CRCW

PRAM using a linear number of processors. We shall call the procedure for 3-coloring
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pseudoforests $-Color-Pseudoforest. Note that an odd cycle is a pseudoforest that can not
be colored in less than 3 colors, and therefore the number of colors used by the procedure

3-Color-Pseudoforest is optimal in this case.

Any tree can be 2-colored. In fact, it is easy to 2-color a tree in polylogarithmic time.
For example, one can use treefix operations [LM86,MR85] to compute the distance from
each node to the root, and color even level nodes with one color and odd level nodes with
the other color. It is harder to find a 2-coloring of a rooted tree in parallel, however, than it
is to find a 3-coloring of a rooted tree. In section 6 we show a lower bound of Q(lgn/lglgn)
on 2-coloring of a directed list on a CRCW PRAM with a polynomial number of processors,

which implies the same lower bound for rooted trees.

4 Coloring Constant-Degree Graphs

The method for coloring rooted trees, described in the previous section, is a general-
ization of the deterministic coin-flipping technique described in [CV86]. The method can
be generalized even further [GP87b] to color constant-degree graphs in a constant number
of colors. In the generalized algorithm, a current color of a node is replaced by a new color
obtained by looking at each neighbor, appending the index of a bit in which the current
color of the node is different from the neighbor’s color to the value of the bit in the node
color, and concatenating the resulting strings. This algorithm runs in O(lg™n) time, but
the number of colors, although constant as a function of n, is exponential in the degree of

the graph.

In this section we show how to use the procedure $-Color-Pseudoforest, described in

the previous section, to color a constant-degree graph with (A+1) colors.

The algorithm Color-Constant-Degree- Graph which colors a constant-degree graph G =
(V, E) with (A+41) colors is presented in Figure 2. The algorithm consists of two phases.
In the first phase we iteratively construct a maximal pseudoforest and remove its edges.
This phase continues until no edges remain, at which point we color all the nodes with one

color. Then we color all the pseudoforests with 3 colors in parallel.



Procedure Color-Constant-Degree-Graph.
E' « F;
for i = 0 to A do begin (( the first phase))
for all v €V in parallel do
if (v, u) € £’ then I; + F; + (v, u) ;
E'+ E'— I;; (( E; are edges of a maximal pseudoforest ))
end;
for all v €V in parallel do ((initial coloring))
C(v) « 1;
for all 0 <:< A in parallel do (( color the pseudoforests))
C; < 3-Color-Pseudoforest(V, E);
for ¢+ A to 0 do begin (( the second phase))

E' «+— F'+ E;
for £k +2to3,j+ 1toA+1do
Vi V;

for all v € V' in parallel do
if C(v)=j and C;(v) =k
then begin
C(v) « max{{1,2,...A+1}—
{C(w) | (v,w) € E'}};
ViV —{v};
end;
end;
end;
end;
end.

Figure 2: The Coloring Algorithm for Constant Degree Graphs



In the second phase we iteratively return the edges of the current pseudoforest, each
time recoloring the nodes to maintain a consistent coloring. At the beginning of each
iteration of this phase, the edges E’ of the current pseudoforest are added, making the
existing (A + 1)-coloring inconsistent. The forest E’ is already colored with 3 colors. Now,
each node has two colors — one from the coloring at the previous iteration and one from
the coloring of the forest. The pairs of colors form a valid 3(A+1)-coloring of the graph.
The iteration finishes by enumerating the color classes, recoloring each node of the current
color with a color from {0,...,A} that is different from the colors of its neighbors. We

can recolor all the nodes of the same color in parallel because they are independent.

Theorem 3 The algorithm Color-Constant-Degree-Graph colors the graph with (A+1)
colors and runs in O(lg A(A? +1g™n)) time on an EREW PRAM using a linear number

of processors.

Proof: At each iteration all edges of the maximal pseudoforest are removed. The definition
of a maximal pseudoforest implies that each node that still has neighbors in the beginning
of an iteration has at least one edge removed during that iteration and therefore its degree
decreases. After at most A iterations, E’ is empty. The running time of each iteration
is determined by the time required to select an unused edge out of an edge list. On an
EREW PRAM, an unused edge can be selected in O(lg A) time. The pseudoforests are
edge-disjoint and therefore can be colored in parallel. By Theorem 2, this takes O(lg Alg™n)
time on an EREW PRAM. The lg A factor appears because we do not use the concurrent-
read capability; a node must broadcast its color to its children using, for example, recursive

doubling. The total time bound for the first stage is therefore O(lg A(A + 1g™n)).

The second phase terminates in at most A iterations as well. For each pseudoforest
we iterate over all the colors. Since in this section we assume that A is a constant, each
iteration can be done in O(lg A) time using word operations; for example, we can represent
colors as bit vectors and use exclusive-or finction together with the recursive doubling
technique. Hence, one iteration of the second phase takes O(Alg A) time, leading to an
overall O(lg A(A? +1g"n)) running time for the second stage of the algorithm and for the
algorithm itself. |
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Given a (A + 1)-coloring of a graph, we can find an MIS of the graph by iterating
over the colors, taking all the remaining nodes of the current color, adding them to the
independent set, and removing them and all their neighbors from the graph. (We refer
to this procedure as Constant-Degree-MIS in the subsequent sections.) The running time
of this algorithm is dominated by the running time of the Color-Constant-Degree-Graph

procedure. The following theorem states this fact formally.

Theorem 4 An MIS in constant-degree A graphs can be found in O(lg A(A*+1g*n)) time
on an EREW PRAM using a linear number of processors.

Remark: The proofs of Theorems 3 and 4 imply that the algorithms Color-Constant-
Degree-Graph and Constant-Degree-MIS have a polylogarithmic running times for graphs
with polylogarithmic maximum degrees. For graphs with maximum degree A = w(lgn),
we can use the following algorithm. First, the graph is partitioned into two subgraphs
with approximately equal number of nodes, and the subgraphs are recursively colored in
A+1 colors. Then we iterate through all the colors of one of the subgraphs, recoloring each
node with a color different from the colors of all of its neighbors. We can find this color
using sorting in O(lg A) [Col86]. This algorithm colors a graph with a maximum degree
of A with A+1 colors in O(Alg Algn) time.

The above algorithms can be implemented in the distributed model of computation
[Awe85,GHS83], where processors have fixed connections determined by the input graph.
The algorithms in the distributed model achieve the same O(lg"n) bound as in the EREW
PRAM model. It was recently shown that 2(lg"n) time is required in the distributed model
to find a maximal independent set on a chain [Awe87,Lin87]. Our algorithms are therefore

optimal (to within a constant factor) in the distributed model.

In [Sha86], flat forests are used to develop a linear processor constant-degree MIS
algorithm which used time exponential in A. A forest is flat if each of its trees, when
properly oriented, has a height of at most 1, and any zero-degree node in the forest is zero-
degree in the input graph. Using the techniques introduced in this section, we can find a
flat forest of a graph by proceeding as follows. Find a maximal pseudoforest P = G(V, E').
Note that there exists a flat forest F = (V, E”), such that E” C E’. Use the algorithm
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3-Color-Pseudoforest to find a 3-coloring of the pseudoforest P and subsequently find an
MIS I of P. Each node v ¢ I adds an edge (v,u) to E” such that v € I. Each node in I
with no adjacent edges in E”, but some adjacent edges in E’, chooses one adjacent edge
in B’ and adds it to E”. The graph F induced by the edges in E” is almost a flat forest
— each tree has a height of at most 2. Now we split trees of height 2 in F into trees of
height one to produce a flat forest. All operations take constant time except for finding the
3-coloring of P, which takes O(lg"n) time. Therefore, we can find a flat forest in O(lg™n)
time on a CREW PRAM using n processors.

5 Coloring and Matching in Planar Graphs

Euler’s formula [Har72] implies that every planar graph has a constant fraction of nodes of
degree 6 or less. In this section we use this property in conjunction with the techniques de-
veloped above to construct efficient algorithms for coloring and finding maximal matchings

in planar graphs.

First we present the algorithm 7-Color-Planar-Graph which finds a 7-coloring of a
planar graph in O(lgn) time. The algorithm is shown in Figure 3. The first stage of the
algorithm separates the nodes of the graph into sets V;, such that the degree of any node
v € Vin GIVi+Viy1 + Viga, ... is at most 6. Then, the algorithm colors all the subgraphs
induced by the node-sets {V;}. These graphs are node-disjoint and therefore the coloring
can be done in parallel. The last stage of the algorithm adds the subgraphs back in reverse

order, updating the coloring.

Theorem 5 The algorithm 7-Color-Planar-Graph constructs a valid 7-coloring using n

processors and O(lgn) time on « CRCW PRAM.

Proof: By Euler’s formula at least a constant fraction of any planar graph’s nodes are
of degree 6 or less. Therefore, the first stage partitions G’s nodes into at most O(lgn)
sets V;. We use concurrent reads and writes to determine whether the degree of a node
is at most 6, and hence each iteration of the first stage is done in constant time. By

theorem 3, the second stage uses only O(lg*n) time. In the i iteration of the third stage,
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Procedure 7-Color-Planar-Graph
Vi V;
Vi, Vo, .. 'V[lgn] — @;
1 0;
while V' # () for all v € V' do in parallel (( first stage ))
if Degree(v) < 6

then begin
Vie= Vit
Vie V! — v
end;
1e—1+1;

end;

for all 0 <:< A in parallel do (( color the pseudoforests))
E; —{(v,w)|v,weV;; (v,w) € F};
C; + Color-Constant-Degree-Graph(V;, £;);

end;
for ¢« i¢—1to 0 do (( second stage ))
V"V,
for j «+ 1 to 7 do
for all v € V" do in parallel
ifC,=j
then begin
Cy <+ max{{l...7} —{Cy |w e Vi(v,w) € E} };
VI =V
end;
end;
ViV +V;
end.

Figure 3: The 7-Coloring Algorithm For Planar Graphs
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the graph G[V|] is already 7-colored and the maximum degree of each node in V; in the
graph G[V; + Vig1 + Vigo +...] is 6. Only constant time is then needed to add in V; and
produce a valid 7-coloring of G[V; 4+ Vii1 + Viya +...]. Therefore, only O(lgn) time is used
in all three stages. |

Remark: If at the first stage, instead of removing from the graph all the nodes with degree
of at most 6, we remove all nodes of average degree or less, the algorithm described above
runs in polylogarithmic time for any graph G such that the average degree of any node-
induced subgraph G’ of G is polylogarithmic in the size of G'. This class contains many
important subclasses including graphs that are unions of a polylogarithmic number of

planar graphs (i.e. graphs with polylogarithmic thickness [Har72]).

Given a valid 7-coloring of a planar graph, we can find an MIS in the graph by iterating
through colors as in our Constant-Degree-MIS algorithm. With concurrent reads and
writes, only constant time is needed for each color class. Hence, we can find an MIS in a

planar graph in O(lgn) time on a CRCW PRAM using a linear number of processors.

After the planar graph is 7-colored, we can find MIS in the graph by iterating through
colors in the same way it is done in the Constant-Degree-MIS procedure. Hence, MIS in

planar graph can be found in O(lgn) time on a CRCW PRAM using a linear number of

Processors.

The deterministic parallel algorithms for 5-coloring planar graphs, described in [BK87]
and in [Nao86], use Q(lg’ n) time and O(n®) processors. These algorithms require a large
number of processors because they use Luby’s MIS algorithm [Lub86]. Using the Constant-
Degree-MIS algorithm described in the previous section, we can reduce the number of

processors to linear, but the running time will still be O(lg” nlg*n) [GP87a,Gol87).

The 5-coloring algorithm presented below is essentially a parallelization of the sequen-
tial algorithms in [CNS81,MSTS80]. Given embedding (which can be computed in O(lg* n)
time [KR86]), our algorithm runs in O(lgnlg™n) time on a CRCW PRAM using a linear
number of processors. Given a graph G = (V, E), the algorithm finds a special large in-
dependent set I of nodes in G, merges some of the neighbors of I (as described below)

and removes the nodes in I to create a new graph G’, recursively colors G’ and uses this
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coloring to color the nodes in G.

The special independent set I is constructed as follows. Let @@ be the set of all nodes in
G of degree greater than 42. Let V be the set of all nodes of degree 4 or less. Let V5 and Vg
be the set of all nodes of degree 5 with at most one neighbor in () and the set of all nodes
of degree 6 with no neighbors in @, respectively. Let S = V, U V5 U Vs, Let G = (S, E*)
be the graph induced by the nodes in S in the graph which is the square of G|V — @] The
set I is a maximal independent set in the graph G* U G[V — @]. Since G* and G[V — Q)]

are of constant degree, we can find I using the procedure Constant-Degree-MIS.

In order to construct the graph G’, the algorithm proceeds as follows. Start with
G' = G. For each node in I N V5 we find two of its non-adjacent neighbors that have low
degree (42 or less), and merge them into a single supernode. For each node in I N Vs we
either merge three of its non-adjacent neighbors into a single supernode, or merge two non-
adjacent pairs of its neighbors into two supernodes. The embedding information is used
as in [CNS81,MSTS80] to find the neighbors that can be merged while preserving planarity

after all nodes in I are removed. Then we remove all the nodes in I to get the graph G'.

After recursively 5-coloring the graph G’, we obtain the coloring of G as follows. First
we color all the nodes of G that correspond to nodes or supernodes of G with the same
color they were colored in G'. Now we add all the nodes in I and in parallel color every

one of them with a color different from the colors of its neighbors.

In order to bound the running time of the 5-coloring algorithm we need the following

lemma, which is similar to Lemma 3 in [CNS81].

Lemma 6 The size of S =V, U V5 U Vg s at least a constant fraction of the total number
of nodes wn the graph.

Proof: Let R =V — §S. Denote by s; and r; the number of nodes of degree ¢ in the sets

and R, respectively. Let r, = 3127, and let rg = 332 ., 7. By Euler’s formula, rg < %n.

We prove the lemma by a counting argument. Definitions of r5 and rg imply that
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2r5 + 1 < 3.2 51y, Euler’s formula implies that 6n > m, therefore

6 42 00
6n > ZiSi + 5r5 + 675 —I—Ziri + Z 1
=1 =7 =43
6 42
> Y isi s+ Tre Y ir
=1 =7
42
> Trs+ 7rg + 727“2'
=7
6 6
> 7(Zsi—l—r5 +re+retrg)— 7232' —Tro

6
> — 7. —
> Tn—"T|5|-7 43n

Thus |S| > =. |

301°

Theorem 7 Guwen an embedded planar graph, the algorithm 5-Color-Planar-Graph -
colors it using a linear number of processors in O(lg"nlgn) time on a« CRCW PRAM,
and O((lg"n +1g A)lgn) time on an EREW PRAM.

Proof: Correctness of the algorithm follows from [CNS81] and from the fact that the nodes
in I are independent in G* U G[V — @]

Lemma 6 implies that the size of S is Q(n). The graph G* has a constant maximum
degree and hence the size of the set I is Q(n) as well. Therefore the depth of recursion is

at most O(lgn).

On a CRCW PRAM, we can find S and ) in constant time as in the algorithm 7-
Color-Planar-Graph. The construction of G* U GG takes constant time because G*° has
constant degree. The algorithm Constant-Degree-MIS finds I in O(lg™n) time. In constant
time nodes in I can merge appropriate neighbors and delete themselves from G forming
G'. Edge lists in G’ need not be compacted when we are using the CRCW PRAM. After

recursively coloring G', we can color G in constant time.
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On the EREW PRAM, O(lg A) additional time per recursion level is needed since we

must compact edge lists of G’ (so that the set S in G’ can be found in constant time). |

Remark: Chrobak, Diks, and Hagerup [CDHS87] have recently improved the result of The-
orem 7 by giving an algorithm for 5-coloring planar graphs that runs in O(lg"nlgn) time
on an EREW PRAM and does not need an embedding.

Using the techniques described in this section, it is easy to construct a fast algorithm
for finding a maximal matching (MM) in a planar (or a constant-degree) graph. As in the
7-coloring algorithm, the first stage of the MM algorithm separates the nodes of the graph
into sets V;, such that the degree of any node v € V; in G[V; + Vii1 + Viga,...] is at most
6. Then the graphs {G[V;]} are colored in parallel. The second stage of the algorithm
recursively finds MM in the graph G[V —V;] and removes the matched nodes to get G[V'],
where V' is the set of the unmatched nodes. The graph G[V’] has no edges and the nodes
Vi in the graph G[V’ + Vi] have maximum degree of 6. Hence, in 7 iterations over the
colors of G[V1] we can find the MM of G.

Theorem 8 A mazimal matching in a planar graph can be found in O(lgn) time on a

CRCW PRAM using a linear number of processors.

Remark: Using Euler’s formula, we can extend our algorithms for 7-coloring and MIS in
planar graphs to graphs of bounded-genus ~v. We apply the algorithm 7-Color-Planar-
Graph as before when there are at least ¢y nodes remaining in the residual graph, for some
constant ¢. The Heawood map-coloring theorem states that any graph can be colored
with O(v) colors, and its proof implies a polynomial time algorithm for finding such a
coloring [Har72]. Therefore, when less than ¢y nodes remain in the residual graph, we
sequentially color it with O(,/7) colors. With only a polynomial in v of additional time,
we can then O(,/¥)-color the graph using the same time and number of processors as for
a 7-coloring planar graph. The related result for MIS on bounded-genus graphs follows as

before.
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6 Lower Bounds

In this section we prove two lower bounds for a CRCW PRAM with a polynomial number

of processors:

e Finding a maximal independent set in a general graph takes Q(lgn/lglgn) time.
e 2-coloring a directed list takes Q(lgn/lglgn) time.

The first lower bound complements the O(lgn) CRCW PRAM upper bound for the
MIS problem that is achieved by Luby’s algorithm [Lub86]. The second lower bound

complements Theorem 2 in this paper.

Theorem 9 The running time of any MIS algorithm on a CRCW PRAM with a polyno-

mial number of processors is Q(lgn/lglgn).

Proof: Given an instance of MAJORITY, we construct an instance of MIS in constant
CRCW PRAM time. MAJORITY is harder that PARITY [FSS81], which was proven to
take Q(lgn/lglgn) time on a CRCW PRAM in [Bea86,BH87]. Therefore the lower bound

claimed in the theorem follows.

Let xy,29,...,2, be an instance of MAJORITY. We construct a complete bipartite
graph G = (V, E') with nodes corresponding to ‘0’ bits of the input on one side and nodes

corresponding to ‘1’ bits on the other side.

V = {1,...,n}
E = {(,7) | xi # 25}

To construct this graph, assign a processor P;; for each pair 1 <1 < j < n. Then, each

processor P;; writes 1 into location M;; if x; # x; and writes 0 otherwise.

A maximal matching in a complete bipartite graph is also a maximum one. By con-
structing a maximal independent set in the line-graph G’ of G, one can find a maxi-
mal matching in G. To construct the graph G’ assign a processor P;j; for each distinct

i,J,k <n. Each P, writes 1 into location M ;y ;) if Mi; = Mj; = 1 and 0 otherwise.
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The MAJORITY equals to 1 if and only if there is an unmatched node 7 € G such that
x; = 1, which can be checked on a CRCW PRAM in constant time. |

Theorem 10 The time to 2-color a directed list on a CRCW PRAM with a polynomial
number of processors is Q(lgn/lglgn).

Proof: We show a constant time reduction from PARITY to the 2-coloring of a directed
list. First, we show how to construct, in constant time, a directed list with elements

corresponding to all the input bits z; with value of 1. Let zy,x5,..., 2, be an instance of

PARITY. Associate a processor P; with each input cell M; that initially holds the value of
x;. Associate a set of processors Pfk with each index ¢, 1 < k < 7 < 1. In one step, each

processor Pfk reads the value of M;_; and, if it equals to 1, writes 1 into Mij, effectively

computing the OR-function on the input values x,_;, x;_;11,...,2,.1. Assign a processor

Pf to each MZ] Each processor P! reads MZ] and .7\42»]4'1 and writes j into M! if and only

K3

if M/ # M/T'. Set M} =0 and if #; = #,_; = 1, set M! = 1. It can be seen that for all
1 <i<n, M!holds max{j | j < i,x; = 1}.

We have constructed a directed list with elements corresponding to all the input bits
x; with value of 1. Assume this list is 2-colored. Then PARITY equals to 1 if and only
if both ends of the list are colored with the same color, which can be checked in constant

time. |

7 Conclusion and Open Problems

We have presented a fast technique for breaking symmetry in parallel and have shown how
to apply this technique to improve the running times and processor bounds of a number of
important parallel algorithms. We beleive that the effeciency of this technique, combined
with the simplicity of its implementation, makes it an important tool in designing parallel

algorithms.

Our results motivate the following open questions.
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o We have proved a lower bound for MIS in general graphs. What is the lower bound
for MIS in planar graphs 7

e Beame has proposed the following algorithm for coloring rooted trees of constant de-
gree on PRAM. Run the algorithm 3-Color-Rooted-Tree for O(lglg™n) steps. Next,
each processor collects the colors of all the descendants on distance O(lg™n) or less
and uses this information and a precomputed lookup table (of size O(lg™nlglg™n))
to compute its final color. Given an (lg"n) preprocessing time, we can precompute
the lookup table; after this preprocessing step, the time to 3-color a tree (or a pseud-
oforest) will be O(lglg™n). Is it possible to 3-color a tree in less than O(lg™n) time
on PRAM with no preprocessing?

e Can we compute an MIS in general graphs in time faster than in O(lgn) ?
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