
NS(1) NS(1)

NAME
ns − network simulator (version 2)

SYNOPSIS
ns [file [arg arg ...]]

DESCRIPTION
ns is an event-driven network simulator. An extensible simulation engine is implemented in C++ that uses
MIT’ s Object Tool Command Language, OTcl (an object oriented version of Tcl) as the command and con-
figuration interface. Aprevious version of the simulator i.e. ns version 1 used the Tool Command Lan-
guage, Tcl as the configuration language.The current version still supports simulation scripts written in
Tcl meant for the ns version 1 simulator.

This manual page documents some of the interfaces for ns.For much more complete documentation,
please see "ns Notes and Documentation" [13], available in the distribution and on the web.

The simulator is invoked via thens interpreter, an extension of the vanilla otclshcommand shell.A simula-
tion is defined by a OTcl script. The scripts use the Simulator Class as the principal interface to the simula-
tion engine. Using the methods defined in this class, a network topology is defined, traffic sources and
sinks are configured, the simulation is invoked, and the statistics are collected. By building upon a fully
functional language, arbitrary actions can be programmed into the configuration.

The first step in the simulation is to acquire an instance of the Simulator class.Instances of objects in
classes are created and destroyed in ns using thenewanddeletemethods. For example, an instance of the
Simulator object is created by the following command:

e.g. set ns [new Simulator]

A network topology is realized using three primitive building blocks: nodes, links, and agents. The Simula-
tor class has methods to create/ configure each of these building blocks.Nodes are created with thenode
Simulator method that automatically assigns an unique address to each node. Links are created between
nodes to form a network topology with thesimplex-linkandduplex-linkmethods that set up unidirectional
and bidirectional links respectively. Agents are the objects that actively drive the simulation. Agentscan
be thought of as the processes and/or transport entities that run onnodesthat may be end hosts or routers.
Traffic sources and sinks, dynamic routing modules and the various protocol modules are all examples of
agents. Agentsare created by instantiating objects in the subclass of class Agent i.e.,Agent/typewhere
type specifies the nature of the agent.For example, a TCP agent is created using the command:

set tcp [new Agent/TCP]

Once the agents are created, they are attached to nodes with theattach-agent Simulator method.Each
agent is automatically assigned a port number unique across all agents on a given node (analogous to a tcp
or udp port). Some types of agents may have sources attached to them while others may generate their own
data. For example, you can attach ‘‘ftp’ ’ and ‘‘telnet’’ sources to ‘‘tcp’’ agents but ‘‘constant bit-rate’’
agents generate their own data. Applications are attached to agents using theattach-appmethod.

Each object has some configuration parameters associated with it that can be modified.Configuration
parameters are instance variables of the object. These parameters are initialized during startup to default
values that can simply be read from the instance variables of the object.For example,$tcp set window_
returns the default window size for the tcp object. The default values for that object can be explicitly over-
ridden by simple assignment either before a simulation begins, or dynamically, while the simulation is in
progress. For example the window-size for a particular TCP session can be changed in the following man-
ner.

$tcp set window_ 25

The default values for the configuration parameters of all the class objects subsequently created can also be

25 July 1997 1

NS(1) NS(1)

changed by simple assignment.For example, we can say

Agent/TCP set window_ 30

to make all future tcp agent creations default to a window size of 30.

Events are scheduled in ns using theat Simulator method that allows OTcl procedures to be invoked at
arbitrary points in simulation time. These OTcl callbacks provide a flexible simulation mechanism -- they
can be used to start or stop sources, dump statistics, instantiate link failures, reconfigure the network topol-
ogy etc. The simulation is started via therun method and continues until there are no more events to be
processed. Atthis time, the original invocation of therun command returns and the Tcl script can exit or
invoke another simulation run after possible reconfiguration.Alternatively, the simulation can be prema-
turely halted by invoking thestopcommand or by exiting the script with Tcl’s standardexit command.

Packets are forwarded along the shortest path route from a source to a destination, where the distance met-
ric is the sum of costs of the links traversed from the source to the destination. The cost of a link is 1 by
default; the distance metric is simply the hop count in this case. The cost of a link can be changed with the
cost Simulator method.A static topology model is used as the default in ns in which the states of
nodes/links do not change during the course of a simulation.Network Dynamics could be specified using
methods described in NETWORK DYNAMICS METHODS section. Also static unicast routing is the
default in which the routes are pre-computed over the entire topology once prior to starting the simulation.
Methods to enable and configure dynamic unicast and multicast routing are described in the UNICAST
ROUTING METHODS and MULTICAST ROUTING METHODS sections respectively.

NS COMMANDS
This section describes the basic commands to create the building blocks of the simulation (i.e. the node,
link and agent objects) and to run the simulation.

The first step in running a simulation as stated before is to acquire an instance of the Simulator class that
has methods to configure and run the simulation. Throughout this section the object variable name $ns is
used to imply a Simulator object.

$ns node
Create a new node object and return a handle to it.

$ns all-nodes-list
Returns a list of all the node objects defined in the simulation.

$ns simplex-linknode1 node2 bw delay type
Create a new unidirectional link betweennode1andnode2with bandwidthbw in bits per second
and link propagation delaydelay in seconds.node1and node2must have already been created
with the node method. bw and delay default to 1.5 Mbits/sec and 100 ms respectively. The
defaults can be changed by modifying the relevant configuration parameters of the DelayLink
Object (see DELAYLINK OBJECTS section).node1andnode2must have already been created
with the node method. Thequeuing discipline of the link is specified bytype, which may be
DropTail, FQ, SFQ, DRR, RED, CBQ,or CBQ/WRR. A DropTail link is a simple FIFO queue
which drops the last packet in the queue when the queue overflows. A FQ link is for Fair Queuing
(for details see [?]).A SFQ link is for Stochastic Fair Queuing (for details see [?]).A DRR link is
for deficit round robin scheduling (for details see [9]).A RED link is a random-early drop queue
(for details see [2]).A CBQ link is for class-based queuing using a packet-by-packet round-robin
scheduler (for details see [3]).A CBQ/WRR link is for class-based queuing with a weighted
round robin scheduler. If multicast routing is used links with interface labels are required.Such
links are created by setting Simulator NumberInterfaces_ variable to 1. All the subsequently cre-
ated links will have interface labels.To disable creation of interfaces simply reset NumberInter-
faces_ to 0 (this is the default).

25 July 1997 2

NS(1) NS(1)

$ns duplex-link node1 node2 bw delay type
Create a new bidirectional link betweennode1and node2with bandwidthbw in bits per second
and link propagation delaydelay in seconds.node1and node2must have already been created
with the node method. bw and delay default to 1.5 Mbits/sec and 100 ms respectively. The
defaults can be changed by modifying the relevant configuration parameters of the DelayLink
Object (see DELAYLINK OBJECTS section). The queuing discipline of the link is specified by
type,which may beDropTail, FQ SFQ, DRR, RED, CBQ,or CBQ/WRR. A DropTail link is a
simple FIFO queue which drops the last packet in the queue when the queue overflows. A FQ link
is for Fair Queuing (for details see [?]).A SFQ link is for Stochastic Fair Queuing (for details see
[?]). A DRR link is for deficit round robin scheduling (for details see [9]).A RED link is a ran-
dom-early drop queue (for details see [2]).A CBQ link is for class-based queuing using a packet-
by-packet round-robin scheduler (for details see [3]).A CBQ/WRR link is for class-based queu-
ing with a weighted round robin scheduler. If multicast routing is used links with interface labels
are required.Such links are created by setting Simulator NumberInterfaces_ variable to 1. All the
subsequently created links will have interface labels.To disable creation of interfaces simply reset
NumberInterfaces_ to 0 (this is the default).

$ns link node1 node2
Returns a reference to the link connecting nodesnode1andnode2. This is useful for setting link
configuration parameters and to invoke tracing methods (see LINK OBJECTS section).

$ns queue-limitnode1 node2 queue-limit
Set the maximum number of packets that can be queued on the link in the direction fromnode1to
node2to queue-limit.The link between node1 and node2 should have already been created.

$ns delaynode1 node2 time-interval
Set the latency of the link in the direction fromnode1to node2to time-intervalseconds. Thelink
between node1 and node2 should have already been created.

$ns costnode1 node2 cost-val
Assign the costcost-valto the link between nodesnode1andnode2. The costs assigned to links
are used in unicast route computations. All the links default to a cost of 1.

$ns multi-link node-list bw delay type
Connects the nodes specified innode-listby a mesh of duplex links (to simulate a broadcast LAN)
with bandwidthbw in bits per second and link propagation delaydelay in seconds.node-list is a
list of node object handles that have already been created with thenodemethod. bw and delay
default to 1.5 Mbits/sec and 100 ms respectively. The defaults can be changed by modifying the
relevant configuration parameters of the DelayLink Object (see DELAYLINK OBJECTS section).
The queuing discipline of the link is specified bytype,which may beDropTail, FQ SFQ, DRR,
RED, CBQ, or CBQ/WRR. A DropTail link is a simple FIFO queue which drops the last packet
in the queue when the queue overflows. A FQ link is for Fair Queuing (for details see [?]).A
SFQ link is for Stochastic Fair Queuing (for details see [?]).A DRR link is for deficit round robin
scheduling (for details see [9]).A RED link is a random-early drop queue (for details see [2]).A
CBQ link is for class-based queuing using a packet-by-packet round-robin scheduler (for details
see [3]). A CBQ/WRR link is for class-based queuing with a weighted round robin scheduler.

$ns multi-link-of-interfaces node-list bw delay type
Connects the nodes specified innode-listby a mesh of duplex links with interfaces (to simulate a
broadcast LAN) with bandwidthbw in bits per second and link propagation delaydelay in sec-
onds. node-list is a list of node object handles that have already been created with thenode
method. bw and delay default to 1.5 Mbits/sec and 100 ms respectively. The defaults can be
changed by modifying the relevant configuration parameters of the DelayLink Object (see
DELAYLINK OBJECTS section). The queuing discipline of the link is specified bytype,which
may beDropTail, FQ SFQ, DRR, RED, CBQ,or CBQ/WRR. A DropTail link is a simple FIFO
queue which drops the last packet in the queue when the queue overflows. A FQ link is for Fair
Queuing (for details see [?]).A SFQ link is for Stochastic Fair Queuing (for details see [?]).A
DRR link is for deficit round robin scheduling (for details see [9]).A RED link is a random-early

25 July 1997 3

NS(1) NS(1)

drop queue (for details see [2]).A CBQ link is for class-based queuing using a packet-by-packet
round-robin scheduler (for details see [3]).A CBQ/WRR link is for class-based queuing with a
weighted round robin scheduler.

new Agent/type
Create an Agent of typetypewhich may be:
Null - Traffic Sink
LossMonitor -Traffic Sink that monitors loss parameters
TCP -BSD Tahoe TCP
TCP/FullTcp -Full Reno TCP with two-way connections [11]
TCP/Reno -BSD Reno TCP
TCP/Newreno -a modified version of BSD Reno TCP
TCP/Veg as - Ve gas TCP (from U. Arizonia via USC)
TCP/Sack1 -BSD Reno TCP with selective ACKs
TCP/Fack -BSD Reno TCP with forward ACKs
TCPSink -standard TCP sink
TCPSink/DelAck -TCP sink that generates delayed ACKs
TCPSink/Sack1 -TCP sink that generates selective ACKs
TCPSink/Sack1/DelAck -delayed-ack TCP sink with selective ACKs
UDP -UDP Transport
RTP - RTP agent
Session/RTP -
RTCP -RTCP agent
IVS/Source -
IVS/Receiver -
SRM -

The methods, configuration parameters and the relevant state variables associated with these
objects are discussed in detail in later sections.Note that some agents e.g. TCP or SRM do not
generate their own data. Such agents need sources attached to them to generate data (see attach-
source and attach-traffic methods in AGENT OBJECTS section).

$ns attach-agentnode agent
Attach the agent objectagent to node. Theagent andnodeobjects should have already been cre-
ated.

$ns detach-agentnode agent
Detach the agent objectagent from node.

$ns connectsrc dst
Establish a two-way connection between the agentsrc and the agentdst. Returns the handle tosrc
agent. Ahelper method has been defined to facilitate creating and attaching an agent to each of
two nodes and establishing a two-way connection between them. (see BUILTINS section).

$ns use-schedulertype
Use an event scheduler of typetype in the simulations.type is one of List, Heap, Calendar, Real-
Time. TheList scheduler is the default. A Heap scheduler uses a heap for event queueing.A Cal-
endar scheduler uses a calendar queue to keep track of events. RealTime scheduler is used in emu-
lation mode when the simulator interacts with an external agent.

$ns attime procedure
Evaluateprocedureat simulation timetime. The procedure could be a globally accessible func-
tion (proc) or an object method (instproc). This command can be used to start and stop sources,
dynamically reconfigure the simulator, dump statistics at specified intervals, etc. Returns an event
id.

$ns canceleid
Remove the event specified by the event id eid from the event queue.

25 July 1997 4

NS(1) NS(1)

$ns now
Return the current simulation time.

$ns gen-map
Walks through the simulation topology and lists all the objects that have been created and the way
they are hooked up to each other. This is useful to debug simulation scripts.

ns-version
Return a string identifying the version of ns currently running.This method is executed in the
global context by the interpreter.

ns-random [seed]
If seedis not present, return a pseudo-random integer between 0 and 2ˆ31-1. Otherwise, seed the
pseudo-random number generator withseedand return the seed used.If seedis 0, choose an ini-
tial seed heuristically (which varies on successive inv ocations). Thismethod is executed in the
global context by the interpreter.

Ns has other facilities for random number generation; please see documentation for details [13].

OBJECT HIERARCHY
A brief description of the object hierarchy in ns is presented in this section. This description is not
intended to be complete. It has been provided to depict how the methods and configuration parameters
associated with the various objects are inherited.For more complete information see "ns notes & documen-
tation" and the automatically generated class library information on the ns web page.

Objects are associated with configuration parameters that can be dynamically set and queried, and state
variables that can be queried (usually modified only when the state variables need to be reset for another
simulation run).

Configuration parameters represent simulation parameters that are usually fixed during the entire simulation
(like a link bandwidth), but can be changed dynamically if desired. State variables represent values that are
specific to a given object and that object’s implementation.

The following diagram depicts a portion the object hierarchy:
Simulator

MultiSim
Node
Link

SimpleLink
CBQLink

DummyLink
DelayLink
Queue

DropTail
FQ
SFQ
DRR
RED
CBQ
CBQ/WRR

QueueMonitor
ED

Flowmon
Flow

rtObject
RouteLogic
Agent

rtProto

25 July 1997 5

NS(1) NS(1)

Static
Session
DV
Direct

Null
LossMonitor
TCP

FullTcp
Reno
Newreno
Sack1
Fack

TCPSink
DelAck
Sack1

DelAck
UDP
RTP
RTCP
IVS

Source
Receiver

SRM
Session

RTP [how is this diff f rom Agent/CBR/RTP]
Appplication

FTP
Telnet
Traffic

Expoo
Pareto
CBR
Trace

Integrator
Samples

For a complete, automatically generated, object hierarchy, see the link "class hierarchy" (which points to
http://www-sop.inria.fr/rodeo/personnel/Antoine.Clerget/ns/) on the ns web pages. (Thanks to Antoine
Clerget for maintaining this!)

For example, any method that is supported by aTCP agent is also supported by aRenoor a Sack1agent.
Default configuration parameters are also inherited.For example,$tcp set window_ 20where $tcp is a
TCP agent defines the default TCP window size for bothTCPandRenoobjects.

OBJECT METHODS
The following sections document the methods, configuration parameters and state variables associated with
the various objects as well as those to enable Network dynamics, Unicast routing, Multicast routing and
Trace and Monitoring support. The object class is specified implicitly by the object variable name in the
description. For example,$tcp implies the tcp object class and all of its child classes.

NODE OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

25 July 1997 6

NS(1) NS(1)

$node id
Returns the node id.

$node neighbors
Returns a list of the neighbour node objects.

$node attachagent
Attach an agent of typeagent to this node.

$node detachagent
Detach an agent of typeagent from this node.

$node agentport
Return a handle to the agent attached to portport on this node. Returns an empty string if the port
is not in use.

$node reset
Reset all agents attached to this node.This would re-initialize the state variables associated with
the various agents at this node.

$node rtObject?
Returns a handle to rtObject if there exists an instance of the object at that node.Only nodes that
take part in a dynamic unicast routing protocol will have this object (see UNICAST ROUTING
METHODS and RTOBJECT OBJECTS section).

$node join-groupagent group
Add the agent specified by the object handleagent to the multicast host group identified by the
addressgroup. This causes the group membership protocol to arrange for the appropriate multi-
cast traffic to reach this agent. Multicast group address should be in the range 0x8000 - 0xFFFF.

$node allocaddr
Returns multicast group address in ascending order on each invocation starting from 0x8000 and
ending at 0xFFFF.

$node shapeshape
Set the shape of the node to "shape". When called before the simulator starts to run, it changes the
default shape of the node in the nam trace file. The default shape of a node is """circle"""

$node colorcolor
Set the color of the node tocolor. It can be called anytime to change the current color of the node
in nam trace file, if there is one.

$node get-attributename
Get the specified attribute nameof the node. Currently a Node object has two attributes:COLOR
andSHAPE. Note: these letters must be capital.

$node add-markname color shape
Add a mark (in nam trace file) withcolor andshapearound the node. The shape can be """cir-
cle""", """hexagon""" and """square""" (case sensitive). The added mark will be identified by
name.

$node delete-markname
Delete the mark withnamein the given node.

There are no state variables or configuration parameters specific to the node class.

LINK OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

$link trace-dynamicsns fileID
Trace the dynamics of this link and write the output tofileID filehandle. ns is an instance of the
Simulator or MultiSim object that was created to invoke the simulation (see TRACE AND

25 July 1997 7

NS(1) NS(1)

MONITORING METHODS section for the output trace format).

$link trace-callback ns cmd
Trace all packets on the link with the callbackcmd. Cmd is invoked for each trace event (enqueue,
dequeue, drop) with the text that would be logged as parameters.(See the description of the log
file for this information.)A demo of trace callbacks is in the program tcl/ex/callback_demo.tcl in
the distribution.

$link color color
Set the color of the Link object. It can be called anytime to change the current color of the link in
nam trace file, if there is one.

$link get-attribute name
Get the specified attributenameof the Link. Currently a Link object has three attributes:COLOR,
ORIENTATION, andQUEUE_POS.

Currently the following two functions should not be directly called. Use$ns duplex-link-op instead. Refer
to the corresponding section in this man page.

$link orient ori
Set the orientation of the link toori. When called before the simulator starts to run, it changes the
default orientation of the link in nam trace file, if there is one. If orientation is unspecified for any
link(s), nam will use automatic layout. The default orientation of a Link object is unspecified.

$link queuePospos
Set the queue position of the link topos. When called before the simulator starts to run, it changes
the default queue placement of the simplex link in nam trace file, if there is one.posspecifies the
angle between the horizontal line and the line along which queued packets will be displayed.

SIMPLELINK OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

$link cost cost-val
Makecost-valthe cost of this link.

$link cost?
Return the cost of this link.

Any configuration parameters or state variables?

DELAYLINK OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.] The DelayLink Objects deter-
mine the amount of time required for a packet to traverse a link. This is defined to be size/bw + delay
where size is the packet size, bw is the link bandwidth and delay is the link propagation delay. There are no
methods or state variables associated with this object.

Configuration Parameters

bandwidth_
Link bandwidth in bits per second.

delay_ Link propagation delay in seconds.

There are no state variables associated with this object.

NETWORK DYNAMICS METHODS
This section describes methods to make the links and nodes in the topology go up and down according to
various distributions. Adynamic routing protocol should generally be used whenever a simulation is to be
done with network dynamics. Note that a static topology model is the default in ns.

25 July 1997 8

NS(1) NS(1)

$ns rtmodelmodel model-params node1 [node2]
Make the link betweennode1and node2change between up and down states according to the
modelmodel. In case onlynode1is specified all the links incident on the node would be brought
up and down according to the specifiedmodel. model-paramscontains the parameters required
for the relevant model and is to be specified as a list i.e. the parameters are to be enclosed in curly
brackets.modelcan be one ofDeterministic, Exponential,Manual, Trace. Returns a handle to a
model object corresponding to the specifiedmodel.

In the Deterministic modelmodel-paramsis [start-time] up-interval down-interval [finish-time].
Starting fromstart-timethe link is made up forup-intervaland down fordown-intervaltill finish-
time is reached. The default values for start-time, up-interval, down-interval are 0.5s, 2.0s, 1.0s
respectively. finish-time defaults to the end of the simulation. The start-time defaults to 0.5s in
order to let the routing protocol computation quiesce.

If the Exponential model is usedmodel-paramsis of the formup-interval down-intervalwhere the
link up-time is an exponential distribution around the meanup-intervaland the link down-time is
an exponential distribution around the meandown-interval. Default values forup-interval and
down-intervalare 10s and 1s respectively.

If the Manual distribution is usedmodel-paramsis at opwhereat specifies the time at which the
operationop should occur. op is one ofup, down. The Manual distribution could be specified
alternately using thertmodel-atmethod described later in the section.

If Trace is specified as themodel the link/node dynamics is read from a Tracefile. Themodel-
paramsargument would in this case be the file-handle of the Tracefile that has the dynamics infor-
mation. Thetracefile format is identical to the trace output generated by the trace-dynamics link
method (see TRACE AND MONITORING METHODS SECTION).

$ns rtmodel-deletemodel-handle
Delete the instance of the route model specified bymodel-handle.

$ns rtmodel-atat op node1 [node2]
Used to specify the up and down times of the link between nodesnode1andnode2. If only node1
is given all the links incident onnode1will be brought up and down. at is the time at which the
operationop that can be eitherup or downis to be performed on the specified link(s).

QUEUE OBJECTS
A queue object is a general class of object capable of holding and possibly marking or discarding packets
as they travel through the simulated topology.

Configuration Parameters

limit_ The queue size in packets.

blocked_
Set to false by default, this is true if the queue is blocked (unable to send a packet to its
downstream neighbor).

unblock_on_resume_
Set to true by default, indicates a queue should unblock itself at the time the last packet
packet sent has been transmitted (but not necessarily received).

DROP-TAIL OBJECTS
Drop-tail objects are a subclass of Queue objects that implement simple FIFO queue.There are no meth-
ods that are specific to drop-tail objects.The only configuration parameter isdrop-front_, which when set

25 July 1997 9

NS(1) NS(1)

to true causes the queue to behave as a drop-from-front queueing discipline. This variable is set to false by
default.

FQ OBJECTS
FQ objects are a subclass of Queue objects that implement Fair queuing. There are no methods that are
specific to FQ objects.

Configuration Parameters

secsPerByte_

There are no state variables associated with this object.

SFQ OBJECTS
SFQ objects are a subclass of Queue objects that implement Stochastic Fair queuing. There are no methods
that are specific to SFQ objects.

Configuration Parameters

maxqueue_

buck ets_

There are no state variables associated with this object.

DRR OBJECTS
DRR objects are a subclass of Queue objects that implement deficit round robin scheduling. These objects
implement deficit round robin scheduling amongst different flows (A particular flow is one which has
packets with the same node and port id OR packets which have the same node id alone). Also unlike other
multi-queue objects, this queue object implements a single shared buffer space for its different flows.

Configuration Parameters

buck ets_
Indicates the total number of buckets to be used for hashing each of the flows.

blimit_ Indicates the shared buffer size in bytes.

quantum_
Indicates (in bytes) how much each flow can send during its turn.

mask_ mask_, when set to 1, means that a particular flow consists of packets having the same
node id (and possibly different port ids), otherwise a flow consists of packets having the
same node and port ids.

RED OBJECTS
RED objects are a subclass of Queue objects that implement random early-detection gateways. Theobject
can be configured to either drop or ‘‘mark’’ packets. Thereare no methods that are specific to RED objects.

Configuration Parameters

bytes_ Set to "true" to enable ‘‘byte-mode’’ RED, where the size of arriving packets affect the
likelihood of marking (dropping) packets.

queue-in-bytes_
Set to "true" to measure the average queue size in bytes rather than packets. Enabling
this option also causesthresh_andmaxthresh_to be automatically scaled bymean_pkt-
size_(see below).

thresh_ The minimum threshold for the average queue size in packets.

25 July 1997 10

NS(1) NS(1)

maxthresh_
The maximum threshold for the average queue size in packets.

mean_pktsize_
A rough estimate of the average packet size in bytes. Used in updating the calculated
av erage queue size after an idle period.

q_weight_
The queue weight, used in the exponential-weighted moving average for calculating the
av erage queue size.

wait_ Set to true to maintain an interval between dropped packets.

linterm_
As the average queue size varies between "thresh_" and "maxthresh_", the packet drop-
ping probability varies between 0 and "1/linterm".

setbit_ Set to "true" to mark packets by setting the congestion indication bit in packet headers
rather than drop packets.

drop-tail_
Set to true to use drop-tail rather than random-drop or drop-from-front when the queue
overflows or the average queue size exceeds "maxthresh_". This is the default behavior.
For a further explanation of these variables, see [2].

drop-rand_
Set to true to use random-drop rather than drop-tail or drop-from-front when the queue
overflows or the average queue size exceeds "maxthresh_".

drop-front_
Set to true to use drop-from-front rather than drop-tail or random drop when the queue
overflows or the average queue size exceeds "maxthresh_".

ns1-compat_
Set to true to avoid resetting the count since the last packet drop, after a forced packet is
dropped. Thisgives compatibility with previous behavior of RED.The default is set to
false.

entle_ Set to true to increase the packet drop rate slowly from max_p to 1 as the average queue
size ranges from maxthresh to twice maxthresh. The default is set to false, and max_p
increases abruptly from max_p to 1 when the average queue size exceeds maxthresh.

State Variables
None of the state variables of the RED implementation are accessible.

CBQ OBJECTS
CBQ objects are a subclass of Queue objects that implement class-based queueing.

$cbq insert $class
Insert traffic classclassinto the link-sharing structure associated with link objectcbq.

$cbq bind $cbqclass $id1 [$id2]
Cause packets containing flow id $id1 (or those in the range$id1 to $id2 inclusive) to be associ-
ated with the traffic class$cbqclass.

$cbq algorithm $alg
Select the CBQ internal algorithm.$alg may be set to one of: "ancestor-only", "top-level", or
"formal".

CBQ/WRR OBJECTS
CBQ/WRR objects are a subclass of CBQ objects that implement weighted round-robin scheduling among
classes of the same priority level. In contrast, CBQ objects implement packet-by-packet round-robin
scheduling among classes of the same priority level.

25 July 1997 11

NS(1) NS(1)

Configuration Parameters

maxpkt_
The maximum size of a packet in bytes. This is used only by CBQ/WRR objects in com-
puting maximum bandwidth allocations for the weighted round-robin scheduler.

CBQCLASS OBJECTS
CBQClass objects implement the traffic classes associated with CBQ objects.

$cbqclass setparamsparent okborrow allot maxidle prio level extradelay
Sets several of the configuration parameters for the CBQ traffic class (see below).

$cbqclass parent [$cbqcl|none]
specify the parent of this class in the link-sharing tree. The parent may be specified as ‘‘none’’ to
indicate this class is a root.

$cbqclass newallot $a
Change the link allocation of this class to the specified amount (in range 0.0 to 1.0). Note that
only the specified class is affected.

$cbqclass install-queue $q
Install a Queue object into the compound CBQ or CBQ/WRR link structure. When a CBQ object
is initially created, it includes no internal queue (only a packet classifier and scheduler).

Configuration Parameters

okborr ow_
is a boolean indicating the class is permitted to borrow bandwidth from its parent.

allot_ is the maximum fraction of link bandwidth allocated to the class expressed as a real num-
ber between 0.0 and 1.0.

maxidle_
is the maximum amount of time a class may be required to have its packets queued before
they are permitted to be forwarded

priority_
is the class’ priority level with respect to other classes. This value may range from 0 to
10, and more than one class may exist at the same priority. Priority 0 is the highest prior-
ity.

level_ is the level of this class in the link-sharing tree. Leaf nodes in the tree are considered to
be at level 1; their parents are at level 2, etc.

extradelay_
increase the delay experienced by a delayed class by the specified number of seconds.

QUEUEMONITOR Objects
QueueMonitor Objects are used to monitor a set of packet and byte arrival, departure and drop counters.It
also includes support for aggregate statistics such as average queue size, etc. [see TRACE AND MONI-
TORING METHODS].

$queuemonitor reset
reset all the cumulative counters described below (arrivals, departures, and drops) to zero.Also,
reset the integrators and delay sampler, if defined.

$queuemonitor set-delay-samplesdelaySamp_
Set up the Samples objectdelaySamp_to record statistics about queue delays.delaySamp_is a
handle to a Samples object i.e the Samples object should have already been created.

$queuemonitor get-bytes-integrator
Returns an Integrator object that can be used to find the integral of the queue size in bytes.(see
Integrator Objects section).

25 July 1997 12

NS(1) NS(1)

$queuemonitor get-pkts-integrator
Returns an Integrator object that can be used to find the integral of the queue size in packets. (see
Integrator Objects section).

$queuemonitor get-delay-samples
Returns a Samples objectdelaySamp_to record statistics about queue delays (see Samples
Objects section).

There are no configuration parameters specific to this object.

State Variables

size_ Instantaneous queue size in bytes.

pkts_ Instantaneous queue size in packets.

parrivals_
Running total of packets that have arrived.

barrivals_
Running total of bytes contained in packets that have arrived.

pdepartures_
Running total of packets that have departed (not dropped).

bdepartures_
Running total of bytes contained in packets that have departed (not dropped).

pdrops_
Total number of packets dropped.

bdrops_
Total number of bytes dropped.

bytesInt_
Integrator object that computes the integral of the queue size in bytes.Thesum_variable
of this object has the running sum (integral) of the queue size in bytes.

pktsInt_
Integrator object that computes the integral of the queue size in packets. Thesum_vari-
able of this object has the running sum (integral) of the queue size in packets.

QUEUEMONITOR/ED Objects
This derived object is capable of differentiating regular packet drops fromearly drops. Somequeues distin-
guish regular drops (e.g. drops due to buffer exhaustion) from other drops (e.g. random drops in RED
queues). Undersome circumstances, it is useful to distinguish these two types of drops.

State Variables

epdrops_
The number of packets that have been dropped ‘‘early’’.

ebdrops_
The number of bytes comprising packets that have been dropped ‘‘early’’

Note: because this class is a subclass of QueueMonitor, objects of this type also have fields such as
pdrops_ andbdrops_. These fields describe thetotal number of dropped packets and bytes, including
both early and non-early drops.

QUEUEMONITOR/ED/FLOWMON Objects
These objects may be used in the place of a conventional QueueMonitor object when wishing to collect per-
flow counts and statistics in addition to the aggregate counts and statistics provided by the basic Queue-
Monitor.

25 July 1997 13

NS(1) NS(1)

$fmon classifier [$cl]
insert (read) the specified classifier into (from) the flow monitor object. This is used to map
incoming packets to which flows they are associated with.

$fmon dump
Dump the current per-flow counters and statistics to the I/O channel specified in a previous
attach operation.

$fmon flows
Return a character string containing the names of all flow objects known by this flow monitor.
Each of these objects are of type QueueMonitor/ED/Flow.

$fmon attach $chan
Attach a tcl I/O channel to the flow monitor. Flow statistics are written to the channel when the
dump operation is executed.

Configuration Parameters

enable_in_
Set to true by default, indicates that per-flow arrival state should be kept by the flow mon-
itor. If set to false, only the aggregate arrival information is kept.

enable_out_
Set to true by default, indicates that per-flow departure state should be kept by the flow
monitor. If set to false, only the aggregate departure information is kept.

enable_drop_
Set to true by default, indicates that per-flow drop state should be kept by the flow moni-
tor. If set to false, only the aggregate drop information is kept.

enable_edrop_
Set to true by default, indicates that per-flow early drop state should be kept by the flow
monitor. If set to false, only the aggregate early drop information is kept.

QUEUEMONITOR/ED/FLO W Objects
These objects contain per-flow counts and statistics managed by a QUEUEMONITOR/ED/FLOWMON
object. They are generally created in an OTcl callback procedure when a flow monitor is given a packet it
cannot map on to a known flow. Note that the flow monitor’s classifier is responsible for mapping packets
to flows in some arbitrary way. Thus, depending on the type of classifier used, not all of the state variables
may be relevant (e.g. one may classify packets based only on flow id, in which case the source and destina-
tion addresses may not be significant).

State Variables

src_ The source address of packets belonging to this flow.

dst_ The destination address of packets belonging to this flow.

flowid_
The flow id of packets belonging to this flow.

UNICAST ROUTING METHODS
A dynamic unicast routing protocol can be specified to run on a subset of nodes in the topology. Note that
a dynamic routing protocol should be generally used whenever a simulation is done with network dynam-
ics.

$ns rtproto proto node-list
Specifies the dynamic unicast routing protocolproto to be run on the nodes specified bynode-list.
Currently proto can be one of Static, Session, DV. Static routing is the default. Sessionimplies
that the unicast routes over the entire topology are instantaneously recomputed whenever a link
goes up or down. DV implies that a simple distance vector routing protocol is to be simulated.

25 July 1997 14

NS(1) NS(1)

node-listdefaults to all the nodes in the topology.

$ns compute-routes
Compute routes between all the nodes in the topology. This can be used if static routing is done
and the routes have to be recomputed as the state of a link has changed. Note that Session routing
(seertproto method above) will recompute routes automatically whenever the state of any link in
the topology changes.

$ns get-routelogic
Returns an handle to a RouteLogic object that has methods for route table lookup etc.

ROUTELOGIC OBJECTS
$routelogic lookupsrcid destid

Returns the id of the node that is the next hop from the node with idsrcid to the node with iddes-
tid.

$routelogic dumpnodeid
Dump the routing tables of all nodes whose id is less thannodeid. Node ids are typically assigned
to nodes in ascending fashion starting from 0 by their order of creation.

RT OBJECT OBJECTS
Every node that takes part in a dynamic unicast routing protocol will have an instance of rtObject (see
NODE OBJECTS section for the method to get an handle to this object at a particular node).Note that
nodes will not have an instance of this object if Session routing is done as a detailed routing protocol is not
being simulated in this case.

$rtobject dump-routes fileID
Dump the routing table to the output channel specified byfileID. fileID must be a file handle
returned by the Tclopencommand and it must have been opened for writing.

$rtobject rtProto? proto
Returns a handle to the routing protocol agent specified byproto if it exists at that node.Returns
an empty string otherwise.

$rtobject nextHop? destID
Returns the id of the node that is the next hop to the destination specified by the node id,destID.

$rtobject rtpref? destID

$rtobject metric? destID

MULTICAST ROUTING METHODS
Multicast routing is enabled by setting Simulator EnableMcast_ variable to 1 at the beginning of the simu-
lation. Notethat this variable must be set before any node, link or agent objects are created in the simula-
tion. Also links must have been created with interface labels (see simplex-link and duplex-link methods in
NS COMMANDS section).

$ns mrtproto proto node-list
Specifies the multicast routing protocolproto to be run on the nodes specified bynode-list. Cur-
rently proto can be one of CtrMcast, DM, detailedDM, dynamicDM, pimDM.node-listdefaults
to all the nodes in the topology. Returns an handle to a protocol-specific object that has methods,
configuration parameters specific to that protocol.Note that currently CtrMcastComp object is
returned if CtrMcast is used but a null string is returned if DM, detailedDM, dynamicDM or
pimDM are used.

If proto is ’CtrMcast’ a Rendezvous Point (RP) rooted shared tree is built for a multicast group.
The actual sending of prune, join messages etc.to set up state at the nodes is not simulated.A
centralized computation agent is used to compute the fowarding trees and set up multicast for-
warding state, (*,G) at the relevant nodes as new receivers join a group. Data packets from the

25 July 1997 15

NS(1) NS(1)

senders to a group are unicast to the RP. Methods are provided in the CtrMcastComp object (see
CTRMCASTCOMP OBJECTS section) that is returned by mrtproto to switch to source-specific
trees, choose some nodes as candidate RPs etc.When a node/link on a multicast distribution tree
goes down, the tree is instanteously recomputed.

If proto is ’DM’ DVMRP-like dense mode is simulated.Parent-child lists are used to reduce the
number of links over which the data packets are broadcast. Prune messages are sent by nodes to
remove branches from the multicast forwarding tree that do not lead to any group members.The
prune timeout value is 0.5s by default (see DM OBJECTS section to change the default). This
does not adapt to network changes. There is also currently no support for proper functioning in
topologies with LANs.

If proto is ’detailedDM’ a dense mode protocol based on Protocol Independent Multicast - Dense
Mode (PIM-DM) is simulated. This is currently the most complete version of the dense mode pro-
tocol in the simulator and is recommended for use over the other dense mode protocols. It adapts
to network dynamics and functions correctly in topologies with LANs (where LANs are created
using the multi-link-of-interfaces method - see NS COMMANDS). In case there are multiple
potential forwarders for a LAN, the node with the highest id is chosen as the forwarder (this is
done through the Assert mechanism).The default values for the prune timeout, interface deletion
timeout (used for LANs) and graft retransmission timeout are 0.5s, 0.1s and 0.05s respectively.
(see Prune/Iface/Timer, Deletion/Iface/Timer and GraftRtx/Timer objects respectively to change
the default values and for more information about the timers).

If proto is ’dynamicDM’ DVMRP-like dense mode protocol that adapts to network changes is sim-
ulated. (i.e.the information that a particular neighbouring node uses this node to reach a particular
network) is read from the routing tables of neighbouring nodes in order to adapt to network
dynamics (DVMRP runs its own unicast routing protocol that exchanges this information).The
current implementation does not support proper functioning in topologies with LANs.The prune
timeout value is 0.5s by default (see DM OBJECTS section to change the default).

If proto is ’pimDM’ Protocol Independent Multicast - Dense mode is simulated.In this case the
data packets are broadcast over all the outgoing links except the incoming link. Prune messages
are sent by nodes to remove the branches of the multicast forwarding tree that do not lead to any
group members. The current implementation does not adapt to network dynamics and does not
support proper functioning in topologies with LANs. The prune timeout value is 0.5s by default
(see DM OBJECTS section to change the default).

CTRMCASTCOMP OBJECTS
A handle to the CtrMcastComp object is returned when the protocol is specified as ’CtrMcast’ in mrtproto.

$ctrmcastcomp switch-treetypegroup-addr
Switch from the Rendezvous Point rooted shared tree to source-specific trees for the group speci-
fied by group-addr. Note that this method cannot be used to switch from source-specific trees
back to a shared tree for a multicast group.

$ctrmcastcomp set_c_rpnode-list
Make all the nodes specified innode-list as candidate RPs and change the state of all the other
nodes to not be candidate RPs.Note that all nodes are candidate RPs by default. Currentlythe
node with the highest node id serves as the RP for all multicast groups. This method should be
invoked before any source starts sending packets to the group or any receiver joins the group.

$ctrmcastcomp get_rpnode group
Returns the RP for the group as seen by the nodenodefor the multicast group with addressgroup-
addr. Note that different nodes may see different RPs for the group if the network is partitioned as
the nodes might be in different partitions.

25 July 1997 16

NS(1) NS(1)

DM OBJECTS
DM Objects implement DVMRP style densemode multicast where parent-child lists are used to reduce the
number of links over which initial data packets are broadcast. There are no methods or state variables spe-
cific to this object.

Configuration parameters

PruneTimeout

Timeout value for the prune state at nodes.

PRUNE/IFACE/TIMER OBJECTS
The Prune/Iface/Timer objects are used to implement the prune timer for detailedDM.There are no meth-
ods or state variables specific to this object.

Configuration parameters

timeout

Timeout value for the prune state at nodes.

DELETION/IF ACE/TIMER OBJECTS
The Deletion/Iface/Timer objects are used to implement the interface deletion timer that are required for
correct functioning at nodes that are part of LANs. If a node has a LAN as its incoming interface for pack-
ets from a certain source and it does not have any downstream members it sends out a prune message onto
the LAN. Any node that has the LAN as its incoming interface for the same source and has downstream
members on hearing the prune message sent on the LAN. will send a join message onto the LAN.When
the node that is acting as the forwarder for the LAN hears the prune message from the LAN, it does not
immediately prune off the LAN as its outgoing interface. Insteadit starts an interface deletion timer for the
outgoing interface. Theforwarder will remove the LAN as its outgoing interface only if it does not receive
any join messages from the LAN before its deletion timer expires. Thereare no methods or state variables
specific to this object.

Configuration parameters

timeout

Timeout value for the interface deletion timer.

GRAFTRTX/TIMER OBJECTS
The GraftRtx/Timer objects are used to implement the graft retransmission timer at nodes. This is to ensure
the reliability of grafts sent upstream by a node.

Configuration parameters

timeout

Timeout value for the graft retransmission timer.

AGENT OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

$agent port
Return the transport-level port of the agent. Ports are used to identify agents within a node.

$agent dst-addr
Return the address of the destination node this agent is connected to.

$agent dst-port
Return the port at the destination node that this agent is connected to.

25 July 1997 17

NS(1) NS(1)

$agent attach-sourcetype
Install a data source of typetype in this agent.type is one of FTP or bursty[???]. Seethe corre-
sponding object methods for information on configuration parameters. Returns a handle to the
source object.

$agent attach-traffic traffic-object
Attach traffic-object to this agenttraffic-object is an instance of Traffic/Expoo, Traffic/Pareto or
Traffic/Trace. Traffic/Expoo generates traffic based on an Exponential On/Off distribution. Traf-
fic/Pareto generates traffic based on a Pareto On/Off distribution. Traffic/Trace generates traffic
from a trace file. The relevant configuration parameters for each of the above objects can be found
in the TRAFFIC METHODS section.

$agent connectaddr port
Connect this agent to the agent identified by the addressaddr and portport. This causes packets
transmitted from this agent to contain the address and port indicated, so that such packets are
routed to the intended agent. The two agents must be compatible (e.g., a tcp-source/tcp-sink pair
as opposed a cbr/tcp-sink pair). Otherwise, the results of the simulation are unpredictable.

Configuration Parameters

dst_ Address of destination that the agent is connected to. Currently 32 bits with the higher 24
bits the destination node ID and the lower 8 bits being the port number.

There are no state variables specific to the generic agent class.

NULL OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.] Null objects are a subclass of
agent objects that implement a traffic sink.They inherit all of the generic agent object functionality. There
are no methods, configuration parameters or state variables specific to this object.

LOSSMONITOR OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.] LossMonitor objects are a
subclass of agent objects that implement a traffic sink which also maintains some statistics about the
received data e.g., number of bytes received, number of packets lost etc.They inherit all of the generic
agent object functionality.

$lossmonitor clear
Resets the expected sequence number to -1.

Configuration Parameters

There are no configuration parameters specific to this object.

State Variables

nlost_ Number of packets lost.

npkts_ Number of packets received.

bytes_ Number of bytes received.

lastPktTime_
Time at which the last packet was received.

expected_
The expected sequence number of the next packet.

TCP OBJECTS
TCP objects are a subclass of agent objects that implement the BSD Tahoe TCP transport protocol as
described in [7]. They inherit all of the generic agent functionality.

25 July 1997 18

NS(1) NS(1)

To trace TCP parameters, mark each parameter with ‘‘$tcp trace window_’’ and then send the output to a
trace file with ‘‘$tcp attach [open trace.tr w]’’.

Tcp segments can be sent with the advance and advanaceby commands. When all data is sent, the done
method will be invoked (which can be overridden in OTcl).

$tcp advance n
Send up to the nth packets.

$tcp advanceby n
Send n more packets.

$tcp done
Functional called when all packets (specified by advance/advanceby/maxpkts_) have been sent.
Can be overriden on a per-object basis.

Configuration Parameters

window_
The upper bound on the advertised window for the TCP connection (in packets).

maxcwnd_
The upper bound on the congestion window for the TCP connection. Set to zero to
ignore. (Thisis the default.) Measuredin packets.

windowInit_
The initial size of the congestion window on slow-start. (inpackets).

wnd_init_option_
The algorithm used for determining the initial size of the congestion window. Set to 1 for
a static algorithm using the value inwindowInit_. Set to 2 for a dynamic algorithm using
a function ofpacketSize_.

syn_ Set to true to model the initial SYN/ACK exchange in one-way TCP. Set to false as
default.

delay_growth_
Set to true to delay the initial congestion window until after one packet has been sent and
acked. Setto false as default.

windowOption_
The algorithm to use for managing the congestion window in linear phase. The standard
algorithm is 1 (the default). Otherexperimental algorithms are documented in the source
code.

windowThresh_
Gain constant to exponential averaging filter used to computeawnd (see below). For
investigations of different window-increase algorithms.

overhead_
The range (in seconds) of a uniform random variable used to delay each output packet.
The idea is to insert random delays at the source in order to avoid phase effects, when
desired [4]. This has only been implemented for the Tahoe ("tcp") version of tcp, not for
tcp-reno. Thisis not intended to be a realistic model of CPU processing overhead.

ecn_ Set to true to use explicit congestion notification in addition to packet drops to signal con-
gestion. Thisallows a Fast Retransmit after a quench() due to an ECN (explicit conges-
tion notification) bit.

packetSize_
The size in bytes to use for all packets from this source.

25 July 1997 19

NS(1) NS(1)

tcpip_base_hdr_size_
The size in bytes of the base TCP/IP header.

tcpTick_
The TCP clock granularity for measuring roundtrip times.Note that it is set by default to
the non-standard value of 100ms. Measured in seconds.

bugFix_
Set to true to remove a bug when multiple fast retransmits are allowed for packets
dropped in a single window of data.

maxburst_
Set to zero to ignore. Otherwise, the maximum number of packets that the source can
send in response to a single incoming ACK.

slow_start_restart_
Boolean; set to 1 to slow-start after the connection goes idle. On by default.

srtt_init_
Initial value for the smoothed roundtrip time estimate. Default is 0 seconds.

t_rttvar_
Initial value for the variance in roundtrip time. Default is 3 seconds.

rtxcur_init_
Initial value for the retransmit value. Default is 6 seconds.

T_SRTT_BITS
Exponent of weight for updating the smoothed round-trip time t_srtt_.Default is 3, for a
weight of 1/2ˆT_SRTT_BITS or 1/8.

T_RTTVAR_BITS
Exponent of weight for updating variance in round-trip time, t_rttvar_. Default is 2, for a
weight of 1/2ˆT_RTTVAR_BITS or 1/4.

rttvar_exp_
Exponent of multiple of the mean deviation in calculating the current retransmit value
t_rtxcur_. Default is 2, for a multiple of 2ˆrttvar_exp_ or 4.

Defined Constants

MWS The Maximum Window Size in packets for a TCP connection. MWS determines the size
of an array in tcp-sink.cc.The default for MWS is 1024 packets. For Tahoe TCP, the
"window" parameter, representing the receiver’s advertised window, should be less than
MWS-1. For Reno TCP, the "window" parameter should be less than (MWS-1)/2.

State Variables

dupacks_
Number of duplicate acks seen since any new data was acknowledged.

seqno_ Highest sequence number for data from data source to TCP.

t_seqno_
Current transmit sequence number.

ack_ Highest acknowledgment seen from receiver.

cwnd_ Current value of the congestion window (in packets).

awnd_ Current value of a low-pass filtered version of the congestion window. For investigations
of different window-increase algorithms.

ssthresh_
Current value of the slow-start threshold (in packets).

25 July 1997 20

NS(1) NS(1)

rtt_ Round-trip time estimate. In seconds (expressed in multiples of tcpTick_).

srtt_ Smoothed round-trip time estimate. In seconds (in multiples of tcpTick_/8).

rttvar_ Round-trip time mean deviation estimate.

t_rtxcur_
Current retransmit value. Inseconds.

backoff_
Round-trip time exponential backoff constant.

TCP/RENO OBJECTS
TCP/Reno objects are a subclass of TCP objects that implement the Reno TCP transport protocol as
described in [7]. There are no methods, configuration parameters or state variables specific to this object.

TCP/NEWRENO OBJECTS
TCP/Newreno objects are a subclass of TCP objects that implement a modified version of the BSD Reno
TCP transport protocol.

There are no methods or state variables specific to this object.

Configuration Parameters

newreno_changes_
Set to zero for the default NewReno described in [7]. Set to 1 for additional NewReno
algorithms as suggested in [10]; this includes the estimation of the ssthresh parameter
during slow-start.

TCP/VEGAS OBJECTS
This section of the man page has not yet been written.

TCP/SACK1 OBJECTS
TCP/Sack1 objects are a subclass of TCP objects that implement the BSD Reno TCP transport protocol
with Selective Acknowledgement Extensions as described in [7].

They inherit all of the TCP object functionality. There are no methods, configuration parameters or state
variables specific to this object.

TCP/FACK OBJECTS
TCP/Fack objects are a subclass of TCP objects that implement the BSD Reno TCP transport protocol with
Forward Acknowledgement congestion control.

They inherit all of the TCP object functionality. There are no methods or state variables specific to this
object.

Configuration Parameters

ss-div4 Overdamping algorithm. Divides ssthresh by 4 (instead of 2) if congestion is detected
within 1/2 RTT of slow-start. (1=Enable, 0=Disable)

rampdown
Rampdown data smoothing algorithm. Slowly reduces congestion window rather than
instantly halving it. (1=Enable, 0=Disable)

25 July 1997 21

NS(1) NS(1)

TCP/FULLTCP OBJECTS
This section has not yet been added to the man page.The implementation and the configuration parameters
are described in [11].

TCPSINK OBJECTS
TCPSink objects are a subclass of agent objects that implement a receiver for TCP packets. Thesimulator
only implements "one-way" TCP connections, where the TCP source sends data packets and the TCP sink
sends ACK packets. TCPSinkobjects inherit all of the generic agent functionality. There are no methods
or state variables specific to the TCPSink object.

Configuration Parameters

packetSize_
The size in bytes to use for all acknowledgment packets.

maxSackBlocks_
The maximum number of blocks of data that can be acknowledged in a SACK option.
For a receiver that is also using the time stamp option [RFC 1323], the SACK option
specified in RFC 2018 has room to include three SACK blocks. This is only used by the
TCPSink/Sack1 subclass. This value may not be increased within any particular
TCPSink object after that object has been allocated.(Once a TCPSink object has been
allocated, the value of this parameter may be decreased but not increased).

TCPSINK/DELACK OBJECTS
DelAck objects are a subclass of TCPSink that implement a delayed-ACK receiver for TCP packets. They
inherit all of the TCPSink object functionality. There are no methods or state variables specific to the
DelAck object.

Configuration Parameters

interval_
The amount of time to delay before generating an acknowledgment for a single packet. If
another packet arrives before this time expires, generate an acknowledgment immedi-
ately.

TCPSINK/SACK1 OBJECTS
TCPSink/Sack1 objects are a subclass of TCPSink that implement a SACK receiver for TCP packets. They
inherit all of the TCPSink object functionality. There are no methods, configuration parameters or state
variables specific to this object.

TCPSINK/SACK1/DELACK OBJECTS
TCPSink/Sack1/DelAck objects are a subclass of TCPSink/Sack1 that implement a delayed-SACK receiver
for TCP packets. They inherit all of the TCPSink/Sack1 object functionality. There are no methods or state
variables specific to this object.

Configuration Parameters

interval_
The amount of time to delay before generating an acknowledgment for a single packet. If
another packet arrives before this time expires, generate an acknowledgment immedi-
ately.

25 July 1997 22

NS(1) NS(1)

SRM OBJECTS
SRM objects are a subclass of agent objects that implement the SRM reliable multicast transport protocol.
They inherit all of the generic agent functionalities.

$srm traffic-sourcesource
Attach a traffic source, e.g., Application/Traffic/CBR, to the SRM agent.

$srm start
Join the multicast group, start the SRM agent and its attached traffic source.

$srm delete
Stop the SRM agent, delete all its status and detach the traffic source.

$srm trace trace-file
Write the traces generated by the SRM agent totrace-file. The traces includes timer settings,
request and repair sending and receipts, etc. Two related files that are not built into ns are
tcl/mcast/srm-debug.tclthat permits more detailed tracing of the delay computation functions, and
tcl/mcast/srm-nam.tclthat separately marks srm control messages from data.The latter is useful
to enhance nam visualisation.

$srm log log-file
Write the recovery statistics during each request or repair tolog-file. The statistics include start
time, duration, message id, total number of duplicate requests and repairs.

$srm distance?node
Return the distance estimate tonodein this SRM agent.

$srm distances?node
Returns a list of <group member, distance> tuples of the distances to all group members that this
node is aware of. The group member is identified as the address of the remote agent. The first
tuple is this agent’s token. Thelist can be directly loaded into a Tcl array.

Configuration Parameters

packetSize_
The data packet size in bytes that will be used for repair messages. The default value is
1024.

requestFunction_
The algorithm used to produce a retransmission request, e.g., setting request timers. The
default value is SRM/request. Other possible request functions are SRM/request/Adap-
tive, used by the Adaptive SRM code.

repairFunction_
The algorithm used to produce a repair, e.g., compute repair timers. The default value is
SRM/repair. Other possible request functions are SRM/repair/Adaptive, used by the
Adaptive SRM code.

sessionFunction_
The algorithm used to generate session messages. Default is SRM/session

sessionDelay_
The basic interval of session messages. Slight random variation is added to this interval to
avoid global synchronization of session messages. User may want to adjust this variable
according to their specific simulation. Measured in seconds; default value is 1.0 seconds.

C1_, C2_
The parameters which control the request timer. Refer to [8] for detail. The default value
is C1_= C2_= 2.0.

D1_, D2_
The parameters which control the repair timer. Refer to [8] for detail. The default value is
D1_= D2_= 1.0.

25 July 1997 23

NS(1) NS(1)

requestBackoffLimit_
The maximum number of exponential backoffs. Default value is 5.

State Variables

stats_ An array containing multiple statistics needed by adaptive SRM agent. Including: dupli-
cate requests and repairs in current request/repair period, average number of duplicate
requests and repairs, request and repair delay in current request/repair period, average
request and repair delay.

SRM/Adaptive OBJECTS
SRM/Adaptive objects are a subclass of the SRM objects that implement the adaptive SRM reliable multi-
cast transport protocol. They inherit all of the SRM object functionalities.

State VariablesRefer to the SRM paper by Sally et al ([11]) for more detail.

pdistance_
This variable is used to pass the distance estimate provided by the remote agent in a
request or repair message.

D1_, D2_
The same as that in SRM agents, except that they are initialized to log10(group size)
when generating the first repair.

MinC1_, MaxC1_, MinC2_, MaxC2_
The minimum/maximum values of C1_ and C2_. Default initial values are defined in [8].
These values define the dynamic range ofC1_andC2_.

MinD1_, MaxD1_, MinD2_, MaxD2_
The minimum/maximum values of D1_ and D2_. Default initial values are defined in [8].
These values define the dynamic range ofD1_andD2_.

AveDups
Higher bound for average duplicates.

AveDelay
Higher bound for average delay.

eps AveDups- dupsdetermines the lower bound of the number of duplicates, when we should
adjust parameters to decrease delay.

APPLICATION OBJECTS
Application objects generate data for transport agents to send.

FTP APPLICATION OBJECTS
Application/FTP objects produce bulk data for a TCP object to send.

$ftp start
Causes FTP to produce packets indefinitely.

$ftp produce n
Causes the FTP object to producen packets instantaneously.

$ftp stop
Causes the attached TCP object to stop sending data.

$ftp attach agent
Attaches an Application/FTP object toagent.

$ftp producemorecount
Causes the Application/FTP object to producecountmore packets.

25 July 1997 24

NS(1) NS(1)

Configuration Parameters

maxpkts
The maximum number of packets generated.

TELNET APPLICATION OBJECTS
Application/Telnet objects produce individual packets with inter-arrival times as follows. If interval_ is
non-zero, then inter-arrival times are chosen from an exponential distribution with average interval_. If
interval_ is zero, then inter-arrival times are chosen using the "tcplib" telnet distribution.

$telnet start
Causes the Application/Telnet object to start producing packets.

$telnet stop
Causes the Application/Telnet object to stop producing packets.

$telnet attachagent
Attaches a Application/Telnet object toagent.

Configuration Parameters

interval_
The average inter-arrival time in seconds for packets generated by the Application/Telnet
object.

TRAFFIC OBJECTS
Traffic objects create data for a transport protocol to send.A Traffic object is created by instantiating an
object of class Application/Traffic/typewheretypeis one of Exponential, Pareto, CBR, Trace.

EXPONENTIAL TRAFFIC OBJECTS
Application/Traffic/Exponential objects generate On/Off traffic. During"on" periods, packets are generated
at a constant burst rate. During "off" periods, no traffic is generated. Burst times and idle times are taken
from exponential distributions.

Configuration Parameters

packet_size_
The packet size in bytes.

burst_time_
Burst duration in seconds.

idle_time_
Idle time in seconds.

rate_ Peak rate in bits per second.

PARETO TRAFFIC OBJECTS
Application/Traffic/Pareto objects generate On/Off traffic with burst times and idle times taken from pareto
distributions.

Configuration Parameters

25 July 1997 25

NS(1) NS(1)

packet_size_
The packet size in bytes.

burst_time_
Av erage on time in seconds.

idle_time_
Av erage off time in seconds.

rate_ Peak rate in bits per second.

shape_ Pareto shape parameter.

CBR (CONSTANT BIT RATE) TRAFFIC OBJECTS
Application/Traffic/CBR objects generate packets at a constant rate. Dither can be added to the interarrival
times by enabling the "random" flag.

Configuration Parameters

rate_ Peak rate in bits per second.

packet_size_
The packet size in bytes.

random_
Flag that turns dithering on and off (default is off).

maxpkts_
Maximum number of packets to send.

TRACE TRAFFIC OBJECTS
Application/Traffic/Trace objects are used to generate traffic from a trace file.

$trace attach-tracefiletfile
Attach the Tracefile objecttfile to this trace. The Tracefile object specifies the trace file from
which the traffic data is to be read (see TRACEFILE OBJECTS section). Multiple Applica-
tion/Traffic/Trace objects can be attached to the same Tracefile object.A random starting place
within the Tracefile is chosen for each Application/Traffic/Trace object.

There are no configuration parameters for this object.

TRACEFILE OBJECTS
Tracefile objects are used to specify the trace file that is to be used for generating traffic (see TRAF-
FIC/TRACE OBJECTS section). $tracefile is an instance of the Tracefile Object.

$tracefile filenametrace-input
Set the filename from which the traffic trace data is to be read totrace-input.

There are no configuration parameters for this object.A trace file consists of any number of fixed length
records. Eachrecord consists of 2 32 bit fields. The first indicates the interval until the next packet is gen-
erated in microseconds. The second indicates the length of the next packet in bytes.

TRACE AND MONITORING METHODS
[NOTE: This section has not been verified to be up-to-date with the release.]Trace objects are used to gen-
erate event level capture logs typically to an output file. Throughout this section $ns refers to a Simulator
object, $agent refers to an Agent object.

25 July 1997 26

NS(1) NS(1)

$ns create-tracetype fileID node1 node2 [option]
Create a Trace object of typetype and attach the filehandlefileID to it to monitor the queues
between nodesnode1andnode2. typecan be one of Enque, Deque, Drop.Enque monitors packet
arrival at a queue. Dequemonitors packet departure at a queue. Drop monitors packet drops at a
queue. fileID must be a file handle returned by the Tclopencommand and it must have been
opened for writing.If option is not specified, the command will instruct the created trace object to
generate ns traces. Ifoption is """nam""" the new object will produce nam traces. Returns a han-
dle to the trace object.

$ns drop-tracenode1 node2 trace
Remove trace object attached to the link between nodesnode1andnode2with traceas the object
handle.

$ns trace-queuenode1 node2 fileID
Enable Enque, Deque and Drop tracing on the link betweennode1andnode2.

$ns namtrace-queuenode1 node2 fileID
Same function as$ns trace-queue, except it produces nam traces.

$ns trace-allfileID
Enable Enque, Deque, Drop Tracing on all the links in the topology created after this method is
invoked. Alsoenables the tracing of network dynamics. fileID must be a file handle returned by
the Tclopencommand and it must have been opened for writing.

$ns namtrace-allfileID
Same function as$ns trace-all, except it will produce all equivalent traces in nam format. In addi-
tion, calling this commandbeforethe simulator starts to run will generate color configurations (if
any) and topology information needed by nam (nodes, links, queues). An example can be found at
ns-2/tcl/ex/nam-example.tcl.

$ns namtrace-configfileID
Assign a file to store nam configuration information, e.g., node/link/agents and some Simulator-
related traces such as annotations. When you don’t want to trace every object. call this function
and then use$ns namtrace-queue, rtModel trace, etc., to insert traces individually. Note that you
should use the same file for individual traces and nam configuration. An example for this is avail-
able at ns-2/tcl/ex/nam-separate-trace.tcl.

$ns monitor-queuenode1 node2
Arrange for queue length of link between nodesnode1andnode2to be tracked. ReturnsQueue-
Monitor object that can be queried to learn average queue size etc. [see QueueMonitor Objects
section]

$ns flush-trace
Flush the output channels attached to all the trace objects.

$link trace-dynamicsns fileID [option]
Trace the dynamics of this link and write the output tofileID filehandle. ns is an instance of the
Simulator or MultiSim object that was created to invoke the simulation.

25 July 1997 27

NS(1) NS(1)

$ns colorid name
Create a color index, which links the numberid to the color namename. All colors createdbefore
the simulator starts to run will be written to nam trace file, if there is any.

$ns trace-annotatestring
Writes an annotation to ns and nam trace file, if there are any. The string should be enclosed in
double quote to make it a single argument.

trace_annotatestring
Another version of$ns trace-annotate, which is a global function and doesn’t require the caller to
know ns.

$ns duplex-link-op $node1 $node2 $op $args
Perform a given operation$op on the given duplex link ($node1, $node2). The following two
operations may be used:
orient -Specify the nam orientation of the duplex link. Values can be

left, right, up, down, their mixture combined by ’-’ (e.g.,
left-down), and a number specifying the angle between the
link and the horizontal line.

queuePos -Construct a queue of the simplex link ($node1,
$node2) in nam, and specify the angle between the
horizontal line and the line along which the queued packets
will be displayed.

$ns add-agent-traceagent name [fileID]
Write a nam trace line, which will create a trace agent foragent when interpreted by nam. The
trace agent’s name will bename. This nam trace agent is used to show the position ofagent and
can be used to write nam traces of variables associated with the agent. By default traces will be
written to the file assigned bynamtrace-all. fileID can be used to write traces to another file.

$agent tracevar name
Label OTcl variablenameof $agentto be traced. Then whenever the variablenamechanges value,
a nam trace line will be written to nam trace file, if there is one. Note thatnamemust be the same
as the variable’s real OTcl name.

$ns delete-agent-traceagent
Write a nam trace line, which will delete the nam trace associated withagent when interpreted by
nam.

$agent add-var-tracename value [type]
Write a nam trace line, which creates a variable trace with namenameand value value, when
interpreted by nam.typeindicates the type of the variable, e.g., is it a list, array, or a plain variable.
Currently only plain variable is supported, for whichtype= ’v’.

The following 2 functions should be calledafter the simulator starts running. This can be done using$ns
at.

$agent delete-var-tracename
Write a nam trace line, which deletes the variable tracenamewhen interpreted by nam.

25 July 1997 28

NS(1) NS(1)

$agent update-var-tracename value [type]
Write a nam trace line, which changes the value of traced variablenamewhen interpreted by nam.
Unlike $agent tracevar , the above 3 functions provide ’manual’ variable tracing, in which vari-
able tracing are done by placing$agent update-var-trace in OTcl code, whiletracevarautomati-
cally generates nam traces when the traced variable changes value.

The tracefile format is backward compatible with the output files in the ns version 1 simulator so that ns-1
post-processing scripts can still be used.Trace records of traffic for link objects with Enque, Deque or
Drop Tracing have the following form:

<code> <time> <hsrc> <hdst> <packet>

where

<code> := [hd+-r] h=hop d=drop +=enque -=deque r=receive
<time> := simulation time in seconds
<hsrc> := first node address of hop/queuing link
<hdst> := second node address of hop/queuing link
<packet> := <type> <size> <flags> <flowID> <src.sport> <dst.dport> <seq> <pktID>
<type> := tcp|telnet|cbr|ack etc.
<size> := packet size in bytes
<flags> := [CP] C=congestion, P=priority
<flowID> := flow identifier field as defined for IPv6
<src.sport> := transport address (src=node,sport=agent)
<dst.sport> := transport address (dst=node,dport=agent)
<seq> := packet sequence number
<pktID> := unique identifer for every new packet

Only those agents interested in providing sequencing will generate sequence numbers and hence
this field may not be useful for packets generated by some agents.

For links that use RED gateways, there are additional trace records as follows:

<code> <time> <value>

where

<code> := [Qap] Q=queue size, a=average queue size,
p=packet dropping probability

<time> := simulation time in seconds
<value> := value

Trace records for link dynamics are of the form:

<code> <time> <state> <src> <dst>

where

<code> := [v]
<time> := simulation time in seconds
<state> := [link-up | link-down]
<src> := first node address of link
<dst> := second node address of link

INTEGRATOR Objects
Integrator Objects support the approximate computation of continuous integrals using discrete sums.The
running sum(integral) is computed as: sum_ +=[lasty_ * (x - lastx_)] where (x, y) is the last element
entered and (lastx_, lasty_) was the element previous to that added to the sum. lastx_ and lasty_ are

25 July 1997 29

NS(1) NS(1)

updated as new elements are added. The first sample point defaults to (0,0) that can be changed by chang-
ing the values of (lastx_,lasty_).

$integrator newpoint x y
Add the point (x,y) to the sum. Note that it does not make sense for x to be less than lastx_.

There are no configuration parameters specific to this object.

State Variables

lastx_ x-coordinate of the last sample point.

lasty_ y-coordinate of the last sample point.

sum_ Running sum (i.e. the integral) of the sample points.

SAMPLES Objects
Samples Objects support the computation of mean and variance statistics for a given sample.

$samples mean
Returns mean of the sample.

$samples variance
Returns variance of the sample.

$samples cnt
Returns a count of the sample points considered.

$samples reset
Reset the Samples object to monitor a fresh set of samples.

There are no configuration parameters or state variables specific to this object.

BUILTINS
[NOTE: This section has not been verified to be up-to-date with the release.]BecauseOTcl is a full-fledged
programming language, it is easy to build high-level simulation constructs from the ns primitives. Several
library routines have been built in this way, and are embedded into the ns interpreter as methods of the Sim-
ulator class. Throughout this section $ns represents a Simulator object.

$ns create-connectionsrcType srcNode dstType dstNode class
Create a source agent of typesrcTypeat nodesrcNodeand connect it to a destination agent of type
dstTypeat nodedstNode.Also, connect the destination agent to the source agent. The traffic class
of both agents is set toclass. This method returns the source agent.

EXAMPLE
set ns [new Simulator]

#
Create two nodes
#
set n0 [$ns node]
set n1 [$ns node]

#
Create a trace and arrange for all the trace events of the
links subsequently created to be dumped to "out.tr"
#
set f [open out.tr w]
$ns trace-all $f

25 July 1997 30

NS(1) NS(1)

#
Connect the two nodes with a 1.5Mb link with a transmission
delay of 10ms using FIFO drop-tail queuing
#
$ns duplex-link $n0 $n1 1.5Mb 10ms DropTail

#
Set up BSD Tahoe TCP connections in opposite directions.
#
set tcp_src1 [new Agent/TCP]
set tcp_snk1 [new Agent/TCPSink]
set tcp_src2 [new Agent/TCP]
set tcp_snk2 [new Agent/TCPSink]
$ns attach-agent $n0 $tcp_src1
$ns attach-agent $n1 $tcp_snk1
$ns attach-agent $n1 $tcp_src2
$ns attach-agent $n0 $tcp_snk2
$ns connect $tcp_src1 $tcp_snk1
$ns connect $tcp_src2 $tcp_snk2

#
Create ftp sources at the each node
#
set ftp1 [$tcp_src1 attach-source FTP]
set ftp2 [$tcp_src2 attach-source FTP]

#
Start up the first ftp at the time 0 and
the second ftp staggered 1 second later
#

$ns at 0.0 "$ftp1 start"
$ns at 1.0 "$ftp2 start"

#
run the simulation for 10 simulated seconds
#
$ns at 10.0 "exit 0"
$ns run

DEBUGGING
To enable debugging when building ns from source:

% ./configure --enable-debug
% make

For more details about ns debugging please see <http://www-mash.cs.berkeley.edu/ns/ns-debugging.html>.

DIFFERENCES FROM NS-1
In general, more complex objects in ns-1 have been broken down into simpler components for greater flexi-
bility and composability. Details of differences between ns-1 and ns-2 can be found at <http://www-
mash.cs.berkeley.edu/ns/ns.html>.

25 July 1997 31

NS(1) NS(1)

HISTORY
Work on the LBL Network Simulator began in May 1990 with modifications to S. Keshav’s
(keshav@research.att.com) REAL network simulator, which he developed for his Ph.D. work at U.C.
Berkeley. In Summer 1991, the simulation description language was revamped, and later, the NEST
threads model was replaced with an event driven framework and an efficient scheduler. Among other con-
tributions, Sugih Jamin (jamin@usc.edu) contributed the calendar-queue based scheduling code to this ver-
sion of the program, which was known astcpsim. In December 1994, McCanne ported tcpsim to C++ and
replaced the yacc-based simulation description language with a Tcl interface, and added preliminary multi-
cast support.Also at this time, the name changed fromtcpsimto the more genericns. Throughout, Floyd
has made modifications to the TCP code and added additional source models for her investigations into
RED gateways, resource management, class-based queuing, explicit congestion notification, and traffic
phase effects. Many of the papers discussing these issues are available through URL http://www-
nrg.ee.lbl.gov/.

SEE ALSO
Tcl(1), tclsh(1), nam(1), otclsh

[1] S. Keshav, ‘‘REAL: A Network Simulator’’. UCB CS Tech Report 88/472, December 1988.See
http://minnie.cs.adfa.oz.au/REAL/index.html for more information.

[2] Floyd, S. and Jacobson, V. Random Early Detection gateways for Congestion Avoidance.
IEEE/ACM Transactions on Networking, Vol. 1, No. 4. August 1993. pp. 397-413.Av ailable
from http://www-nrg.ee.lbl.gov/floyd/red.html.

[3] Floyd, S. Simulator Tests. July 1995. URLftp://ftp.ee.lbl.gov/papers/simtests.ps.Z.

[4] Floyd, S., and Jacobson, V. On Traffic Phase Effects in Packet-Switched Gateways. Internetwork-
ing: Research and Experience, V.3 N.3, September 1992. pp. 115-156.

[5] Floyd, S., and Jacobson, V. Link-sharing and Resource Management Models for Packet Networks.
IEEE/ACM Transactions on Networking, Vol. 3 No. 4, August 1995. pp. 365-386.

[6] Floyd, S., Notes of Class-Based Queueing: Setting Parameters. URLftp://ftp.ee.lbl.gov/papers/
params.ps.Z. September1995.

[7] Fall, K., and Floyd, S. Comparisons of Tahoe, Reno, and Sack TCP. December 1995. URL ftp://
ftp.ee.lbl.gov/papers/sacks.ps.Z.

[8] David Wetherall and Christopher J. Linblad. Extending Tcl for Dynamic Object-Oriented Pro-
gramming. InProceedings of the USENIX Tcl/Tk Workshop, Toronto, Ontario, USENIX.July,
1995. At<http://www.tns.lcs.mit.edu/publications/tcltk95.djw.html>.

[9] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round Robin. In Proc. of
SIGCOMM, pp. 231-242, 1995.

[10] Hoe, J., Improving the Start-up Behavior of a Congestion Control Scheme for TCP. in SIG-
COMM 96, August 1996, pp. 270-280. URL http://www.acm.org/sigcomm/sig-
comm96/papers/hoe.html.

[11] Fall, K., Floyd, S., and Henderson, T., Ns Simulator Tests for Reno FullTCP. URL
ftp://ftp.ee.lbl.gov/papers/fulltcp.ps. July1997.

[12] Floyd, S., Jacobson, V., Liu, C.-G., McCanne, S. and Zhang, L., A Reliable Multicast Framework
for Light-weight Sessions and Application Level Framing. To appear in IEEE/ACK Transaction on
Networking, November 1996. ftp://ftp.ee.lbl.gov/papers/srm1.ps.gz

[13] Fall, K., and Varadhan, K., (eds.), "Ns notes and documentation", work in progress.http://www-
mash.cs.berkeley.edu/ns/nsDoc.ps.gz

Research using ns is on-going.A l ist of recent research contributions employing ns can be found at
<http://www-mash.cs.berkeley.edu/ns/ns-research.html>.

25 July 1997 32

NS(1) NS(1)

Work on ns is on-going.Information about the most recent version is available at <http://www-
mash.cs.berkeley.edu/ns/ns.html>.

A mailing list for ns users and announcements is also available, send mail to ns-users-
request@mash.cs.berkeley.edu or ns-announce-request@mash.cs.berkeley.edu to join. Questions should be
forwarded to ns-users; ns-announce will be low-traffic announcements only.

AUTHORS
Steven McCanne (mccanne@ee.lbl.gov), University of California, Berkeley and Lawrence Berkeley
National Laboratory, Berkeley, CA, and Sally Floyd (floyd@ee.lbl.gov) Lawrence Berkeley National Labo-
ratory, Berkeley, CA. A complete list of contributors to ns is at <http://www-mash.cs.berkeley.edu/ns/ns-
contributors.html>.

BUGS
Not all of the functionality supported in ns-1 has been ported to ns-2.

This manual page is incomplete.

25 July 1997 33

