NS(1) NS(1)

NAME
ns — network simulator (version 2)

SYNOPSIS
ns[file[argarg ...]]

DESCRIPTION
nsis an @ent-driven network simulator An extensible simulation engine is implemented in C++ that uses
MIT’ s Cbject Tool Command Language, OTcl (an object oriengzdion of Tcl) as the command and con-
figuration interice. Aprevious version of the simulator i.e. nsrgion 1 used the Tool Command Lan-
guage, Tcl as the configuration languadéae current version still supports simulation scripts written in
Tcl meant for the ns version 1 simulator.

This manual page documents some of the iate for ns.For much more complete documentation,
please see "ns Notes and Documentation" [13]ladble in the distribution and on the web.

The simulator is imoked via thensinterpreteran etension of the anilla otclshcommand shell A simula-

tion is defined by a OTcl script. The scripts use the Simulator Class as the principal interface to the simula-
tion engine. Using the methods defined in this class, aonkett@pology is defined, traffic sources and
sinks are configured, the simulation igdked, and the statistics are collected. By building upon a fully
functional language, arbitrary actions can be programmed into the configuration.

The first step in the simulation is to acquire an instance of the Simulator tiatmnces of objects in
classes are created and destroyed in ns usingethand deletemethods. Br example, an instance of the
Simulator object is created by the following command:

e.g. set ns [rve Simulator]

A network topology is realized using three priméikuilding blocks: nodes, links, and agents. The Simula-

tor class has methods to create/ configure each of these building bimitss are created with tmede

Simulator method that automatically assigns an unique address to each node. Links are created between
nodes to form a network topology with thenplex-linkand duplex-linkmethods that set up unidirectional

and bidirectional links respeedly. Agents are the objects that aely drive the simulation. Agentscan

be thought of as the processes and/or transport entities that nodesthat may be end hosts or routers.

Traffic sources and sinks, dynamic routing modules anddheus protocol modules are all examples of
agents. Agentsre created by instantiating objects in the subclass of class Agemtgent/typewhere

type specifies the nature of the agetr example, a TCP agent is created using the command:

set tcp [ner Agent/TCP]

Once the agents are createdythee attached to nodes with tlatach-agent Simulator method.Each
agent is automatically assigned a port number unique across all agentvemradg (analogous to a tcp
or udp port). Some types of agents mayehsurces attached to them while others may generate their o
data. er example, you can attaclitp’’ and “telnet” sources to ‘tcp” agents but “constant bit-rate’
agents generate their own data. Applications are attached to agents usittgctir@ppmethod.

Each object has some configuration parameters associated with it that can be mGdifiguration
parameters are instancariables of the object. These parameters are initialized during startupatdt def
values that can simply be read from the instarexéables of the objectFor example,$tcp set window
returns the default windosize for the tcp object. The default values for that object caxplecigly over-
ridden by simple assignment either before a simulation begins, or dynamidally the simulation is in
progress. Br example the window-size for a particular TCP session can be changed in thimdpittan-
ner.

$tcp set window_ 25

The default alues for the configuration parameters of all the class objects subsequently created can also be

25 July 1997 1

NS(1)

NS(1)

changed by simple assignmeffor example, we can say
Agent/TCP set window_ 30

to male dl future tcp agent creations default to a windsize of 30.

Events are scheduled in ns using #teSimulator method that allows OTcl procedures to vekied a
arbitrary points in simulation time. Thes& € callbacks provide a flexible simulation mechanism -y the
can be used to start or stop sources, dump statistics, instantiate link failures, reconfigureothet oyl
ogy etc. The simulation is started via th@ method and continues until there are no meents to be
processed. Athis time, the original Wocation of therun command returns and the Tcl script cait er
invoke another simulation run after possible reconfiguratiédternatively, the simulation can be prema-
turely halted by imoking thestopcommand or by exiting the script with T&Bandardext command.

Packets are forwarded along the shortest path route from a source to a destination, where the distance met-
ric is the sum of costs of the links\eased from the source to the destination. The cost of a link is 1 by
default; the distance metric is simply the hop count in this case. The cost of a link can be changed with the
cost Simulator method.A static topology model is used as the default in ns in which the states of
nodes/links do not change during the course of a simulahlietwork Dynamics could be specified using
methods described in NETWORKYDIAMICS METHODS section. Also static unicast routing is the
default in which the routes are pre-computedrdhe entire topology once prior to starting the simulation.
Methods to enable and configure dynamic unicast and multicast routing are described in the UNICAST
ROUTING METHODS and MULTICAST ROUTING METHODS sections respesyi.

NS COMMANDS

This section describes the basic commands to creataitldeng blocks of the simulation (i.e. the node,
link and agent objects) and to run the simulation.

The first step in running a simulation as stated before is to acquire an instance of the Simulator class that
has methods to configure and run the simulation. Throughout this section the object variable name $ns is
used to imply a Simulator object.

$ns node
Create a n@ node object and return a handle to it.

$ns all-nodes-list
Returns a list of all the node objects defined in the simulation.

$ns simplex-linknodel node2 bw delay type
Create a ng unidirectional link betweemodeland node2with bandwidthbw in bits per second
and link propagation delagielay in seconds.nodeland node2must hae dready been created
with the node method. bw and delay default to 1.5 Mbits/sec and 100 ms respetyi The
defaults can be changed by modifying the vah¢ configuration parameters of the DelayLink
Object (see DELAYLINK OBJECTS sectionpodeland node2must hae dready been created
with the node method. Thequeuing discipline of the link is specified bype, which may be
DropTall, FQ, SFQ, DRR, RED, CBQ,or CBQ/WRR. A DropTail link is a simple FIFO queue
which drops the last packet in the queue when the quexidoavs. AFQ link is for Rir Queuing
(for details see [?])A SFQ link is for Stochastic Fair Queuing (for details see [R]PRR link is
for deficit round robin scheduling (for details see [#)RED link is a random-early drop queue
(for details see [2])A CBQ link is for class-based queuing using a jadly/-paclet round-robin
scheduler (for details see [3]A CBQ/WRR link is for class-based queuing with a weighted
round robin schedulerf multicast routing is used links with interface labels are requiadth
links are created by setting Simulator Numberlategs_ variable to 1. All the subsequently cre-
ated links will hae interface labels.To dsable creation of interfaces simply reset Numberinter
faces_ to O (this is the default).

25 July 1997 2

NS(1)

NS(1)

$ns duplex-link nodel node2 bw delay type
Create a neg bidirectional link betweemodeland node2with bandwidthbw in bits per second
and link propagation delagielay in seconds.nodeland node2must hae dready been created
with the node method. bw and delay default to 1.5 Mbits/sec and 100 ms respetyi The
defaults can be changed by modifying the vah¢ configuration parameters of the DelayLink
Object (see DELAYLINK OBJECTS section). The queuing discipline of the link is specified by
type,which may beDropTail, FQ SFQ, DRR, RED, CBQ,or CBQ/WRR. A DropTail link is a
simple FIFO queue which drops the last pdk the queue when the quewerflows. AFQ link
is for Fair Queuing (for details see [?B. SFQ link is for Stochastic Fair Queuing (for details see
[?]). A DRR link is for deficit round robin scheduling (for details see [#])RED link is a ran-
dom-early drop queue (for details see [2)) CBQ link is for class-based queuing using a ck
by-paclet round-robin scheduler (for details see [3})) CBQ/WRR link is for class-based queu-
ing with a weighted round robin scheduléf multicast routing is used links with interface labels
are required.Such links are created by setting Simulator Numberinterfaces_ variable to 1. All the
subsequently created links will\r&interface labels.To dsable creation of interfaces simply reset
Numberinterfaces_ to O (this is the default).

$ns link nodel node2
Returns a reference to the link connecting naustelandnode2. This is useful for setting link
configuration parameters and todke tracing methods (see LINK OBJECTS section).

$ns queue-limitnodel node2 queue-limit
Set the maximum number of packets that can be queued on the link in the directioodeito
node2to queue-limit. The link between nodel and node2 shouleehdready been created.

$ns delaynodel node?2 time-interval
Set the latencof the link in the direction frormodelto node2to time-intervalseconds. Thénk
between nodel and node2 shouldehdready been created.

$ns costnodel node2 cost-val
Assign the costost-valto the link between nodeswdelandnode2. The costs assigned to links
are used in unicast route computations. All the links default to a cost of 1.

$ns multi-link node-list bw delay type
Connects the nodes specifiechiode-listby a mesh of dupielinks (to simulate a broadcast LAN)
with bandwidthbw in bits per second and link propagation dad@ayin seconds.node-listis a
list of node object handles thatveadready been created with tirde method. bw and delay
default to 1.5 Mbits/sec and 100 ms respatyi The defults can be changed by modifying the
relevant configuration parameters of the DelayLink Object (see DELAYLINK OBJECTS section).
The queuing discipline of the link is specified thpe, which may beDropTail, FQ SFQ, DRR,
RED, CBQ, or CBQ/WRR. A DropTail link is a simple FIFO queue which drops the last pack
in the queue when the queueadlows. A FQ link is for Fair Queuing (for details see [?].
SFQ link is for Stochasticdit Queuing (for details see [?JA DRR link is for deficit round robin
scheduling (for details see [9]A RED link is a random-early drop queue (for details see [&]).
CBQ link is for class-based queuing using a p&dly/-paclet round-robin scheduler (for details
see [3]). A CBQ/WRR link is for class-based queuing with a weighted round robin scheduler.

$ns multi-link-of-interfaces node-list bw delay type
Connects the nodes specifiedniode-listby a mesh of duplelinks with interfaces (to simulate a
broadcast LAN) with bandwidtbw in bits per second and link propagation detkyayin sec-
onds. node-listis a list of node object handles thatvbadready been created with theode
method. bw and delay default to 1.5 Mbits/sec and 100 ms respatyi The defaults can be
changed by modifying the refant configuration parameters of the DelayLink Object (see
DELAYLINK OBJECTS section). The queuing discipline of the link is specifietlypg, which
may beDropTail, FQ SFQ, DRR, RED, CBQ,or CBQ/WRR. A DropTail link is a simple FIFO
gueue which drops the last packet in the queue when the quatleves. A FQ link is for Rir
Queuing (for details see [?])A SFQ link is for Stochastic Fair Queuing (for details see [A).
DRR link is for deficit round robin scheduling (for details see [B])RED link is a random-early

25 July 1997 3

NS(1) NS(1)

drop queue (for details see [2JA CBQ link is for class-based queuing using a p&dky/-packet
round-robin scheduler (for details see [3).CBQ/WRR link is for class-based queuing with a
weighted round robin scheduler.

new Agenttype
Create an Agent of typgpewhich may be:

Null - Traffic Sink
LossMonitor -Traffic Sink that monitors loss parameters
TCP -BSD Tahoe TCP
TCP/FullTcp -Full Reno TCP with two-way connections [11]
TCP/Reno BSD Reno TCP
TCP/Nevreno -a modified version of BSD Reno TCP
TCPN\ega® -Vegas TCP (from U. Arizonia via USC)
TCP/Sackl BSD Reno TCP with seleeg ACKs
TCP/Fack -BSD Reno TCP with forward ACKs
TCPSink -standard TCP sink

TCPSink/DelAck -TCP sink that generates delayed ACKs

TCPSink/Sackl TCP sink that generates selgetACKs

TCPSink/Sackl/DelAck delayed-ack TCP sink with sele@iACKs

UDP -UDP Transport

RTP -RTP agent

Session/RP -

RTCP -RTCP agent

IVS/Source -

IVS/Recever -

SRM -
The methods, configuration parameters and thesamtlestate variables associated with these
objects are discussed in detail in later sectiddste that some agents e.g. TCP or SRM do not
generate their own data. Such agents need sources attached to them to generate data (see attach-
source and attach-traffic methods in AGENT OBJECTS section).

$ns attach-agennode @ent
Attach the agent objeeigent to node. The agent andnodeobjects should he dready been cre-
ated.

$ns detach-agenhode @ent
Detach the agent objeatyent from node.

$ns connectrc dst
Establish a tw-way connection between the agertand the agerdst. Returns the handle &rc
agent. Ahelper method has been defined to facilitate creating and attaching an agent to each of
two nodes and establishing a two-way connection between them. (see BUILTINS section).

$ns use-scheduletype
Use an eent scheduler of typgypein the simulations.typeis one of List, Heap, CalendaReal-
Time. Thelist scheduler is the dafilt. AHeap scheduler uses a heap fan¢ queueing.A Cal-
endar scheduler uses a calendar queue to keep tragdnts.eRealime scheduler is used in emu-
lation mode when the simulator interacts with an external agent.

$ns attime procedure
Evaluateprocedureat simulation timeime. The procedure could be a globally accessible func-
tion (proc) or an object method (instproc). This command can be used to start and stop sources,
dynamically reconfigure the simulat@ump statistics at specified intervals, etc. Returnsvante
id.
$ns cancekid
Remwe the event specified by thevent id eid from the @ent queue.

25 July 1997 4

NS(1) NS(1)

$ns now
Return the current simulation time.

$ns gen-map
Walks through the simulation topology and lists all the objects that been created and theaw
they are hooked up to each otherhis is useful to debug simulation scripts.

ns-version
Return a string identifying the version of ns currently runnifis method is xecuted in the
global context by the interpreter.

ns-random| seed]
If seedis not present, return a pseudo-random integer between 0 and 2°31-1. Otherwise, seed the
pseudo-random number generator vadedand return the seed useld.seedis 0, choose an ini-
tial seed heuristically (which varies on sucoessinvocations). Thismethod is recuted in the
global context by the interpreter.

Ns has other facilities for random number generation; please see documentation for details [13].

OBJECT HIERARCHY
A brief description of the object hieraschn ns is presented in this section. This description is not
intended to be complete. It has been provided to depigtthe methods and configuration parameters
associated with the various objects are inheritem.more complete information see "ns notes & documen-
tation" and the automatically generated class library information on the ns web page.

Objects are associated with configuration parameters that can be dynamically set and queried, and state
variables that can be queried (usually modified only when the sdaitiebles need to be reset for another
simulation run).

Configuration parameters represent simulation parameters that are usually fixed during the entire simulation
(like a ink bandwidth), but can be changed dynamically if desired. Staigiles represent values that are
specific to a gien object and that obje&’implementation.

The following diagram depicts a portion the object hierarchy:
Simulator
MultiSim
Node
Link
SimpleLink
CBQLink
DummyLink
DelayLink
Queue
DropTail
FQ
SFQ
DRR
RED
CBQ
CBQ/WRR
QueueMonitor
ED
Flowmon
Flow
rtObject
RoutelLogic
Agent
rtProto

25 July 1997 5

NS(1) NS(1)

Static
Session
DV
Direct
Null
LossMonitor
TCP
FullTcp
Reno
Newreno
Sackl
Fack
TCPSink
DelAck
Sackl
DelAck
UDP
RTP
RTCP
IVS
Source
Recever
SRM
Session
RTP [how is this diff from Agent/CBR/RTP]
Appplication
FTP
Telnet
Traffic
Expoo
Paeto
CBR
Trace
Integrator
Samples

For a complete, automatically generated, object hiengrebe the link "class hierargh (which points to
http://www-sop.inria.fr/rodeo/personnel/Antoine.@jet/ns/) on the ns web pages. (Thanks to Antoine
Clerget for maintaining this!)

For example, ag method that is supported byT&P agent is also supported byRenoor a Sacklagent.
Default configuration parameters are also inheritEdr example, $tcp set window_ 2@here $tcp is a
TCP agent defines the default TCP wiwdsize for bothTCP and Renoobijects.

OBJECT METHODS
The following sections document the methods, configuration parameters and state variables associated with
the various objects as well as those to enable diktalynamics, Unicast routing, Multicast routing and
Trace and Monitoring support. The object class is specified implicitly by the object variable name in the
description. Br example$tcp implies the tcp object class and all of its child classes.

NODE OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

25 July 1997 6

NS(1)

NS(1)

$node id
Returns the node id.

$node neighbors
Returns a list of the neighbour node objects.

$node attachagent
Attach an agent of typaegent to this node.

$node detachagent
Detach an agent of tymgent from this node.

$node ageniport
Return a handle to the agent attached to port on this node. Returns an empty string if the port
is not in use.

$node reset
Reset all agents attached to this nodlhis would re-initialize the state variables associated with
the various agents at this node.

$node rtObject?
Returns a handle to rtObject if there exists an instance of the object at thaOrmg&odes that
take part in a dynamic unicast routing protocol willveathis object (see UNICAST RUTING
METHODS and ROBJECT OBJECTS section).

$node join-group agent group
Add the agent specified by the object haratient to the multicast host group identified by the
addresggroup. This causes the group membership protocol to arrange for the appropriate multi-
cast traffic to reach this agent. Multicast group address should be in the range 0x8000 - OXFFFF.

$node allocaddr
Returns multicast group address in ascending order on eamfation starting from 0x8000 and
ending at OXFFFF.

$node shapeshape
Set the shape of the node shapé. When called before the simulator starts to run, it changes the
default shape of the node in the nam trace file. The default shape of a node is ""'circle

$node colorcolor
Set the color of the node twlor. It can be called anytime to change the current color of the node
in nam trace file, if there is one.

$node get-attributename
Get the specified attnitbe nameof the node. Currently a Node object has ttributes: COLOR
andSHAPE Note: these letters must be capital.

$node add-markname color shape
Add a mark (in nam trace file) wittplor and shapearound the node. The shape can be "™"cir
cle™", ""hexagon™" and ""square™" (case sengd). The added mark will be identified by

name

$node delete-markname
Delete the mark witihamein the gven node.

There are no state variables or configuration parameters specific to the node class.

LINK OBJECTS

[NOTE: This section has not been verified to be up-to-date with the release.]

$link trace-dynamicsns fileID
Trace the dynamics of this link and write the outpufitelD filehandle. nsis an instance of the
Simulator or MultiSim object that & created to woke the simulation (see TRACE AND

25 July 1997 7

NS(1) NS(1)

MONITORING METHODS section for the output trace format).

$link trace-callback ns cmd
Trace all packets on the link with the callbachd Cmd is invoked for each tracevent (enqueue,
dequeue, drop) with the text that would be logged as paramé¢8as.the description of the log
file for this information.) A demo of trace callbacks is in the program tcl/ex/callback_demo.tcl in
the distribution.

$link color color
Set the color of the Link object. It can be callegitane to change the current color of the link in
nam trace file, if there is one.

$link get-attribute name
Get the specified attnilbe nameof the Link. Currently a Link object has three atitids:COLOR
ORIENTATION, and QUEUE_POS

Currently the follaving two functions should not be directly called. e duplex-link-op instead. Refer
to the corresponding section in this man page.

$link orient ori
Set the orientation of the link twri. When called before the simulator starts to run, it changes the
default orientation of the link in nam trace file, if there is one. If orientation is unspecifiedyfor an
link(s), nam will use automatic layout. The default orientation of a Link object is unspecified.

$link queuePospos
Set the queue position of the linkgos When called before the simulator starts to run, it changes
the defult queue placement of the simplek in nam trace file, if there is ongosspecifies the
angle between the horizontal line and the line along which queued packets will be displayed.

SIMPLELINK OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

$link cost cost-val
Make cost-valthe cost of this link.

$link cost?
Return the cost of this link.

Any configuration parameters or state variables?

DELAYLINK OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.] The DelayLink Objects deter
mine the amount of time required for a packet toense a link. This is defined to be size/bw + delay
where size is the packet size, bw is the link bandwidth and delay is the link propagatiorfelayare no
methods or state variables associated with this object.

Configuration Parameters

bandwidth_
Link bandwidth in bits per second.

delay_ Link propagation delay in seconds.
There are no state variables associated with this object.

NETWORK DYNAMICS METHODS
This section describes methods to m#ie links and nodes in the topology go up andrdaccording to
various distritutions. Adynamic routing protocol should generally be used wiereesmulation is to be
done with network dynamics. Note that a static topology model is the default in ns.

25 July 1997 8

NS(1)

NS(1)

$ns rtmodelmodel model-params nodel [node2]

Make the link betweemodeland node2change between up and down states according to the
modelmodel. In case onlynodelis specified all the links incident on the nodewd be brought

up and down according to the specifisddel. model-pamscontains the parameters required

for the releant model and is to be specified as a list i.e. the parameters are to be enclosed in curly
brackets. modelcan be one obeterministic, ExponentialManual, Tace. Returns a handle to a
model object corresponding to the specifieadel.

In the Deterministic modahodel-paramss [start-time] up-interval down-interval [finish-time].
Starting fromstart-timethe link is made up faup-intervaland down fodown-intervaltill finish-

time is reached. The default values for start-time, up-intervaindiatenal are 0.5s, 2.0s, 1.0s
respectiely. finish-time dedults to the end of the simulation. The start-time defaults to 0.5s in
order to let the routing protocol computation quiesce.

If the Exponential model is usedodel-paramgs of the formup-interval down-intervalhere the
link up-time is an exponential distribution around the maasintervaland the link down-time is
an exponential distribution around the meadown-interval. Default values forup-interval and

down-intervalare 10s and 1s respeety.

If the Manual distribution is usemhodel-paramgs at opwhereat specifies the time at which the
operationop should occur op is one ofup, down. The Manual distribution could be specified
alternately using themodel-atmethod described later in the section.

If Trace is specified as thmodelthe link/node dynamics is read from sadefile. Themodel-
paramsargument would in this case be the file-handle of taedfile that has the dynamics infor
mation. Thetracefile format is identical to the trace output generated by the trace-dynamics link
method (see TRACE AND MONITORING METHODS SECTION).

$ns rtmodel-deletemodel-handle

Delete the instance of the route model specifiechbgel-handle.

$ns rtmodel-atat op nodel [node2]

Used to specify the up and down times of the link between namtkslandnode?2. If only nodel
is given dl the links incident omodelwill be brought up and den. at is the time at which the
operationop that can be eitharp or downis to be performed on the specified link(s).

QUEUE OBJECTS

A queue object is a general class of object capable of holding and possibly marking or discarditsy pack
as thg travel through the simulated topology.

Configuration Parameters

limit_ The queue size in packets.

blocked_
Set to false by default, this is true if the queue is ldddkinable to send a packet to its
downstream neighbor).

unblock_on_resume_
Set to true by default, indicates a queue should unblock itself at the time the ladt pack
packet sent has been transmitted (but not necessarilyegcei

DROP-TAIL OBJECTS

Drop-tail objects are a subclass of Queue objects that implement simple FIFO Ghete.are no meth-
ods that are specific to drop-tail objecihe only configuration parameterdsop-front , which when set

25 July 1997 9

NS(1) NS(1)

to true causes the queue to hehas a dop-from-front queueing discipline. Thisnable is set to false by
default.

FQ OBJECTS
FQ objects are a subclass of Queue objects that impleragngueuing. There are no methods that are
specific to FQ objects.

Configuration Parameters
secsPerByte
There are no state variables associated with this object.

SFQ OBJECTS
SFQ objects are a subclass of Queue objects that implement Stochastic Fair queuing. There are no methods
that are specific to SFQ objects.

Configuration Parameters
maxqueue_
buckes
There are no state variables associated with this object.

DRR OBJECTS
DRR objects are a subclass of Queue objects that implement deficit round robin scheduling. These objects
implement deficit round robin scheduling amongst different flows (A particularifiane which has
paclets with the same node and port id OR eéskvhich hae the same node id alone). Also ueligther
multi-queue objects, this queue object implements a single shared buffer space for its different flows.

Configuration Parameters

buckes
Indicates the total number of buckets to be used for hashing each of the flows.

blimit_ Indicates the shared buffer size in bytes.

quantum_
Indicates (in bytes) kemuch each flav can send during its turn.

mask _ mask_, when set to 1, means that a particular flansists of packets having the same
node id (and possibly different port ids), otherwise & ftonsists of packets having the
same node and port ids.

RED OBJECTS
RED objects are a subclass of Queue objects that implement random early-deteetiaysg Theobject
can be configured to either drop or “mankackets. Thereare no methods that are specific to RED objects.

Configuration Parameters

bytes Set to "true" to enablébyte-mode’ RED, where the size of arriving packets affect the
likelihood of marking (dropping) packets.

gueue-in-bytes
Set to "true" to measure th@esage queue size in bytes rather than pteck Enabling
this option also causdbresh_andmaxthresh to be automatically scaled lmgean_pkt-
size_(see below).

thresh_ The minimum threshold for theverage queue size in packets.

25 July 1997 10

NS(1) NS(1)

maxthresh_
The maximum threshold for theetage queue size in packets.

mean_pktsize
A rough estimate of theverage packet size in bytes. Used in updating the calculated
aveaage queue size after an idle period.

g_weight_
The queue weight, used in the exponential-weightedingcaverage for calculating the
aveage queue size.

wait_ Set to true to maintain an interval between dropped packets.

linterm_
As the aerage queue size varies between "thresh_" and "maxthresh_", thet decf-
ping probability varies between 0 and "1/linterm".

setbhit_ Set to "true" to mark packets by setting the congestion indication bit iretphekders
rather than drop packets.

drop-tail_
Set to true to use drop-tail rather than random-drop or drop-from-front when the queue
overflows or the serage queue size exceeds "maxthresh_". This is tleulddfehaior.
For a further explanation of these variables, see [2].

drop-rand_
Set to true to use random-drop rather than drop-tail or drop-from-front when the queue
overflows or the gerage queue size exceeds "maxthresh_".

drop-front_
Set to true to use drop-from-front rather than drop-tail or random drop when the queue
overflows or the gerage queue size exceeds "maxthresh_".

nsl-compat_
Set to true tomid resetting the count since the last packet drop, after a forcedtpsck
dropped. Thigyives compatibility with previous behavior of REDThe default is set to
false.

entle_ Set to true to increase the packet drop rate slowly from max_p to 1 asthgeaqueue
size ranges from maxthresh to twice maxthresh. The default is satéo &nd max_p
increases abruptly from max_p to 1 when therage queue size exceeds maxthresh.

State Variables
None of the state variables of the RED implementation are accessible.

CBQ OBJECTS
CBQ objects are a subclass of Queue objects that implement class-based queueing.

$chq insert $class
Insert traffic classlassinto the link-sharing structure associated with link obgdt.

$cbq bind $cbqclass $id1 [$id2]
Cause packets containingwlad $id1 (or those in the rang®idl to $id2 inclusive) to be asoci-
ated with the traffic clasicbqclass.

$chq algorithm $alg
Select the CBQ internal algorithnfalg may be set to one of: "ancestor-only", "topdg, or
"formal"”.

CBQ/WRR OBJECTS
CBQ/WRR objects are a subclass of CBQ objects that implement weighted round-robin scheduling among
classes of the same priorityvé In contrast, CBQ objects implement patky-paclkt round-robin
scheduling among classes of the same prionitsl.le

25 July 1997 11

NS(1) NS(1)

Configuration Parameters

maxpkt_
The maximum size of a packet in bytes. This is used only by CBQ/WRR objects in com-
puting maximum bandwidth allocations for the weighted round-robin scheduler.

CBQCLASS OBJECTS
CBQClass objects implement the traffic classes associated with CBQ objects.

$chgclass setparamparent okborrow allot maxidle prio level extradelay
Sets seeral of the configuration parameters for the CBQ traffic class (see below).

$chqgclass parent [$cbqgcl|none]
specify the parent of this class in the link-sharing tree. The parent may be specifiedelst 0
indicate this class is a root.

$chqclass newallot $a
Change the link allocation of this class to the specified amount (in range 0.0 to 1.0). Note that
only the specified class is affected.

$cbqclass install-queue $q
Install a Queue object into the compound CBQ or CBQ/WRR link structure. When a CBQ object
is initially created, it includes no internal queue (only a packet classifier and scheduler).

Configuration Parameters

okborrow_
is a boolean indicating the class is permitted to bobandwidth from its parent.

allot_ is the maximum fraction of link bandwidth allocated to the clapsessed as a real num-
ber between 0.0 and 1.0.

maxidle_
is the maximum amount of time a class may be requiredvinitsapaclets queued before
they are permitted to be forwarded

priority
is the class’ priority heel with respect to other classes. This value may range from 0 to
10, and more than one class may exist at the same priBrityity O is the highest prier
ity.

level s the level of this class in the link-sharing tree. Leaf nodes in the tree are considered to
be at l@el 1; their parents are atid 2, etc.

extradelay
increase the delay experienced by a delayed class by the specified number of seconds.

QUEUEMONITOR Objects
QueueMonitor Objects are used to monitor a set ofgiaankd byte avel, departure and drop counteris.
also includes support for aggate statistics such aveage queue size, etc. [see TRACE AND MONI-
TORING METHODS].

$gueuemonitor reset
reset all the cumulate cunters described belo(arrivals, departures, and drops) to zewlso,
reset the integrators and delay sampfetefined.

$gueuemonitor set-delay-sampledelaySamp_
Set up the Samples objes¢laySamp to record statistics about queue delagelaySamp is a
handle to a Samples object i.e the Samples object sharddready been created.

$gueuemonitor get-bytes-integrator
Returns an Inggrator object that can be used to find the integral of the queue size in (sges.
Integrator Objects section).

25 July 1997 12

NS(1)

NS(1)

$gueuemonitor get-pkts-integrator
Returns an Integrator object that can be used to find ttgrahtef the queue size in pak. (see
Integrator Objects section).

$qgueuemonitor get-delay-samples
Returns a Samples objedelaySamp_to record statistics about queue delays (see Samples
Objects section).

There are no configuration parameters specific to this object.
State Variables

size_ Instantaneous queue size in bytes.

pkts _ Instantaneous queue size in packets.

parrivals_
Running total of packets that\earived.

barrivals_
Running total of bytes contained in packets thaetarived.

pdepartures_
Running total of packets that\eadeparted (not dropped).

bdepartures_
Running total of bytes contained in packets thaetdeparted (not dropped).

pdrops_
Total number of packets dropped.

bdrops_
Total number of bytes dropped.

bytesint_
Integrator object that computes the integral of the queue size in bitesum_variable
of this object has the running sum (integral) of the queue size in bytes.

pktsint_
Integrator object that computes the integral of the queue size irtsackhesum_vari-
able of this object has the running sum (integral) of the queue size in packets.

QUEUEMONITOR/ED Objects

This derved object is capable of differentiating regular packet drops feanty drops. Someueues distin-
guish regular drops (e.g. drops due tdfdr exhaustion) from other drops (e.g. random drops in RED
gueues). Undesome circumstances, it is useful to distinguish theseypes of drops.

State Variables

epdrops_
The number of packets thatveabeen dropped “early”.

ebdrops_
The number of bytes comprising packets thaeHaen dropped “early”

Note: because this class is a subclass of QueueMombjects of this type also ta fields such as
pdr ops_ andbdr ops_. These fields describe thetal number of dropped paets and bytes, including
both early and non-early drops.

QUEUEMONITOR/ED/FLOWMON Objects

These objects may be used in the place of sendional QueueMonitor object when wishing to collectper
flow counts and statistics in addition to the aggte counts and statistics provided by the basic Queue-
Monitor.

25 July 1997 13

NS(1) NS(1)

$fmon classifier [$cl]
insert (read) the specified classifier into (from) thevfloonitor object. This is used to map
incoming packets to which flows there associated with.

$fmon dump
Dump the current pdtow counters and statistics to the I/O channel specified in @opise
at t ach operation.

$fmon flows
Return a character string containing the names of ail dlojects known by this fle monitor.
Each of these objects are of type QueueMonitor/ER/Flo

$fmon attach $chan
Attach a tcl I/O channel to the flomonitor. Flow statistics are written to the channel when the
dunp operation is eecuted.

Configuration Parameters

enable_in_
Set to true by default, indicates thatflew arrival state should be kept by theflanon-
itor. If set to false, only the aggyae arrval information is kept.

enable_out_
Set to true by default, indicates that-flew departure state should be kept by thevflo
monitor. If set to false, only the aggyaee departure information is kept.

enable_drop_
Set to true by default, indicates thatflew drop state should be kept by thewlamoni-
tor. If set to false, only the aggyae drop information is kept.

enable_edrop_
Set to true by default, indicates that-flew early drop state should besft by the flay
monitor. If set to false, only the agggae early drop information is kept.

QUEUEMONITOR/ED/FLO W Objects
These objects contain plow counts and statistics managed by dEYEMONITOR/ED/FLOWMON
object. Thg are generally created in an OTcl callback procedure whemwanifilanitor is gven a packet it
cannot map on to a known o Note that the flar monitor’s dassifier is responsible for mapping patsk
to flows in some arbitrary ay. Thus, depending on the type of classifier used, not all of the stdbles
may be releant (e.g. one may classify packets based only amifiip in which case the source and destina-
tion addresses may not be significant).

State Variables
src_ The source address of packets belonging to this flo
dst The destination address of packets belonging to this flo

flowid__
The flow id of packets belonging to this flo

UNICAST ROUTING METHODS
A dynamic unicast routing protocol can be specified to run on a subset of nodes in the tolNotegyat
a dynamic routing protocol should be generally used whamg smulation is done with network dynam-
ics.
$ns rtproto proto node-list
Specifies the dynamic unicast routing protopadto to be run on the nodes specifiedrimde-list.
Currently proto can be one of Static, SessiorV.DStatic routing is the deflult. Sessionmplies
that the unicast routesver the entire topology are instantaneously recomputed wheaelink
goes up or don. DV implies that a simple distance vector routing protocol is to be simulated.

25 July 1997 14

NS(1)

NS(1)

node-listdefaults to all the nodes in the topology.

$ns compute-routes
Compute routes between all the nodes in the topol@bis can be used if static routing is done
and the routes ka © be ecomputed as the state of a link has changed. Note that Session routing
(seertproto method abwee) will recompute routes automatically wheeethe state of anlink in
the topology changes.

$ns get-routelogic
Returns an handle to a RouteLogic object that has methods for route table lookup etc.

ROUTELOGIC OBJECTS

$routelogic lookupsrcid destid
Returns the id of the node that is the next hop from the node wsthidito the node with idles-

tid.
$routelogic dump nodeid

Dump the routing tables of all nodes whose id is lesstiodeid. Node ids are typically assigned
to nodes in ascending fashion starting from 0 by their order of creation.

RTOBJECT OBJECTS

Every node that takes part in a dynamic unicast routing protocol wi#l Ba instance of rtObject (see
NODE OBJECTS section for the method to get an handle to this object at a particular Moejhat
nodes will not hee a instance of this object if Session routing is done as a detailed routing protocol is not
being simulated in this case.

$rtobject dump-routes filelD
Dump the routing table to the output channel specifiedilByD. fileID must be a file handle
returned by the Tabpencommand and it must @ keen opened for writing.

$rtobject rtProto? proto
Returns a handle to the routing protocol agent specifiegrdiy if it exists at that nodeReturns
an empty string otherwise.

$rtobject nextHop? destID
Returns the id of the node that is the next hop to the destination specified by the dedtlid,

$rtobject rtpref? destID
$rtobject metric? destID

MULTICAST ROUTING METHODS

Multicast routing is enabled by setting Simulator EnableMcaatiable to 1 at the beginning of the simu-
lation. Notethat this variable must be set beforg ande, link or agent objects are created in the simula-
tion. Alsolinks must hae keen created with interface labels (see simplex-link and duplex-link methods in
NS COMMANDS section).

$ns mrtproto proto node-list
Specifies the multicast routing protoqmioto to be run on the nodes specifiedrmde-list. Cur-
rently proto can be one of CtrMcast, DM, detailedDM, dynamicDM, pimDNbde-listdefaults
to all the nodes in the topolagyReturns an handle to a protocol-specific object that has methods,
configuration parameters specific to that protodebte that currently CtrMcastComp object is
returned if CtrMcast is used but a null string is returned if DM, detailedDM, dynamicDM or
pimDM are used.

If proto is 'CtrMcast’ a Rendepus Point (RP) rooted shared tree is built for a multicast group.
The actual sending of prune, join messages &tcet up state at the nodes is not simulated.
centralized computation agent is used to compute therding trees and set up multicast-for
warding state, (*,G) at the relant nodes as merecevers join a group. Data packets from the

25 July 1997 15

NS(1)

NS(1)

senders to a group are unicast to the RIethods are provided in the CtrMcastComp object (see
CTRMCASTCOMP OBJECTS section) that is returned by mrtproto to switch to source-specific
trees, choose some nodes as candidate RP¥Wten a node/link on a multicast distribution tree
goes down, the tree is instanteously recomputed.

If proto is 'DM’ DVMRP-like dense mode is simulatedRaent-child lists are used to reduce the
number of links wer which the data packets are broadcast. Prune messages are sent by nodes to
remove lranches from the multicast forwarding tree that do not leadytgraaip members.The

prune timeout value is 0.5s by default (see DM OBJECTS section to change ahk).défhis

does not adapt to network changes. There is also currently no support for proper functioning in
topologies with LANSs.

If proto is detailedDM’ a dense mode protocol based on Protocol Independent Multicast - Dense
Mode (PIM-DM) is simulated. This is currently the most complete version of the dense mode pro-
tocol in the simulator and is recommended for use the other dense mode protocols. It adapts

to network dynamics and functions correctly in topologies with LANs (where LANs are created
using the multi-link-of-intedices method - see NS COMMANDS). In case there are multiple
potential forvarders for a LAN, the node with the highest id is chosen as the forwarder (this is
done through the Assert mechanisnijie default values for the prune timeout, interface deletion
timeout (used for LANs) and graft retransmission timeout are 0.5s, 0.1s and 0.05svedgpecti
(see Prune/tce/Timer Deletion/Iface/Tmer and GraftRtx/Timer objects respeely to change

the default values and for more information about the timers).

If proto is 'dynamicDM’ D/MRP-like dense mode protocol that adapts to meknchanges is sim-
ulated. (i.ethe information that a particular neighbouring node uses this node to reach a particular
network) is read from the routing tables of neighbouring nodes in order to adapt torknetw
dynamics (DVMRP runs itsven unicast routing protocol that exchanges this informatidrie
current implementation does not support proper functioning in topologies with LANs prune
timeout value is 0.5s by default (see DM OBJECTS section to change the default).

If proto is 'pimDM’ Protocol Independent Multicast - Dense mode is simulatedhis case the
data packets are broadcaseall the outgoing links ecept the incoming link. Prune messages
are sent by nodes to remeothe branches of the multicast forwarding tree that do not leadyto an
group members. The current implementation does not adapt torketynamics and does not
support proper functioning in topologies with LANs. The prune timeout value is 0.5s dyltdef
(see DM OBJECTS section to change the default).

CTRMCASTCOMP OBJECTS

A handle to the CtrMcastComp object is returned when the protocol is specified as 'CtrMcast’ in mrtproto.

$ctrmcastcomp switch-treetypegroup-addr
Switch from the Rendepus Point rooted shared tree to source-specific trees for the group speci-
fied by group-addr. Note that this method cannot be used to switch from source-specific trees
back to a shared tree for a multicast group.

$ctrmcastcomp set_c_rmode-list
Make dl the nodes specified inode-listas candidate RPs and change the state of all the other
nodes to not be candidate RAgote that all nodes are candidate RPs bwuwlef Currentlythe
node with the highest node id sesvas the RP for all multicast groups. This method should be
invoked before aly source starts sending packets to the group precever joins the group.

$ctrmcastcomp get_rpnode group
Returns the RP for the group as seen by the nodefor the multicast group with addregsoup-
addr. Note that different nodes may see different RPs for the group if thenkesypartitioned as
the nodes might be in different partitions.

25 July 1997 16

NS(1) NS(1)

DM OBJECTS
DM Objects implement BMRP style densemode multicast where parent-child lists are used to reduce the
number of links wer which initial data packets are broadcast. There are no methods or state variables spe-
cific to this object.

Configuration parameters
PruneTimeout
Timeout value for the prune state at nodes.

PRUNE/IFACE/TIMER OBJECTS
The Prune/lce/imer objects are used to implement the prune timer for detailedDidre are no meth-
ods or state variables specific to this object.

Configuration parameters
timeout
Timeout value for the prune state at nodes.

DELETION/IF ACE/TIMER OBJECTS
The Deletion/lace/Tmer objects are used to implement the interface deletion timer that are required for
correct functioning at nodes that are part of LANs. If a node has a LAN as its incoming interface for pack-
ets from a certain source and it does nethany d@wnstream members it sends out a prune message onto
the LAN. Any node that has the LAN as its incoming intexé for the same source and hawmkiream
members on hearing the prune message sent on the LAN. will send a join message onto thi¢hkeAN.
the node that is acting as the forwarder for the LAN hears the prune message from the LAN, it does not
immediately prune éthe LAN as its outgoing inteate. Instead starts an interface deletion timer for the
outgoing interhce. Theforwarder will rem@e the LAN as its outgoing inteate only if it does not receas
ary join messages from the LAN before its deletion timguires. Thereare no methods or statanables
specific to this object.

Configuration parameters
timeout
Timeout value for the interface deletion timer.

GRAFTRTX/TIMER OBJECTS
The GraftRtx/Tmer objects are used to implement the graft retransmission timer at nodes. This is to ensure
the reliability of grafts sent upstream by a node.

Configuration parameters
timeout
Timeout value for the graft retransmission timer.

AGENT OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.]

$agent port
Return the transportyel port of the agent. Ports are used to identify agents within a node.

$agent dst-addr
Return the address of the destination node this agent is connected to.

$agent dst-port
Return the port at the destination node that this agent is connected to.

25 July 1997 17

NS(1) NS(1)

$agent attach-sourceaype
Install a data source of tyfggpein this agent.typeis one of FTP or lrsty[???]. Se¢he corre-
sponding object methods for information on configuration parameters. Returns a handle to the
source object.

$agent attach-traffictraffic-object
Attach traffic-objectto this agentraffic-objectis an instance of raffic/Expoo, Taffic/Pareto or
Traffic/Trace. Taffic/Expoo generates traffic based on an Exponential ®@ui€tfibution. Traf-
fic/Pareto generates traffic based onaae® On/Of distribution. Traffic/Trace generates tfaf
from a trace file. The relant configuration parameters for each of thevababjects can be found
in the TRAFFIC METHODS section.

$agent connectddr port
Connect this agent to the agent identified by the ad@dhsand portport. This causes paeks
transmitted from this agent to contain the address and port indicated, so that swth pack
routed to the intended agent. Theotegents must be compatible (e.g., a tcp-source/tcp-sink pair
as opposed a cbr/tcp-sink pair). Otherwise, the results of the simulation are unpredictable.

Configuration Parameters

dst Address of destination that the agent is connected to. Currently 32 bits with the higher 24
bits the destination node ID and the lower 8 bits being the port number.

There are no state variables specific to the generic agent class.

NULL OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.] Null objects are a subclass of
agent objects that implement a traffic sifikhey inherit all of the generic agent object functionalifihere
are no methods, configuration parameters or state variables specific to this object.

LOSSMONITOR OBJECTS
[NOTE: This section has not been verified to be up-to-date with the release.] LossMonitor objects are a
subclass of agent objects that implement didraink which also maintains some statistics about the
receved data e.g., number of bytes recml, number of packets lost etd@hey inherit all of the generic
agent object functionality.

$lossmonitor clear
Resets the expected sequence number to -1.

Configuration Parameters
There are no configuration parameters specific to this object.

State Variables
nlost Number of packets lost.
npkts_ Number of packets reaed.
bytes Number of bytes recesd.

lastPktTime_
Time at which the last packet was reedi

expected_
The expected sequence number of the next packet.

TCP OBJECTS
TCP objects are a subclass of agent objects that implement the BSD Tahoe TCP transport protocol as
described in [7]. Theinherit all of the generic agent functionality.

25 July 1997 18

NS(1)

NS(1)

To trace TCP parameters, mark each parameter with “$tcp trace wifidind then send the output to a
trace file with “$tcp attach [open trace.tr w]".

Tcp segments can be sent with the advance arehadeby commands. When all data is sent, the done
method will be inoked (which can be werridden in OTcl).

$tcp advance n
Send up to the nth packets.

$tcp advanceby n
Send n more packets.

$tcp done
Functional called when all packets (specified byaade/adanceby/maxpkts) ka been sent.
Can be werriden on a per-object basis.

Configuration Parameters

window_
The upper bound on the advertised windor the TCP connection (in packets).

maxcwnd_
The upper bound on the congestion windimr the TCP connection. Set to zero to
ignore. (Thisis the defult.) Measureth packets.

windowlnit_
The initial size of the congestion wind@n dow-start. (inpackets).

wnd_init_option_
The algorithm used for determining the initial size of the congestion win8et to 1 for
a datic algorithm using the value wmindowlnit . Set to 2 for a dynamic algorithm using
a function ofpadkeSize..

syn_ Set to true to model the initial SYNOX exchange in one-way TCPset to false as
default.

delay_growth
Set to true to delay the initial congestion windmtil after one packet has been sent and
acked. Seto false as default.

windowOption_
The algorithm to use for managing the congestion winitidinear phase. The standard
algorithm is 1 (the defult). Otherexperimental algorithms are documented in the source
code.

windowThresh_
Gain constant to exponentiatesaging filter used to computawnd (see belw). For
investigations of different window-increase algorithms.

overhead_
The range (in seconds) of a uniform randasmiable used to delay each output peick
The idea is to insert random delays at the source in ordewi phase effects, when
desired [4]. This has only been implemented for the Tahoe (“tgpsjon of tcp, not for
tcp-reno. Thiss not intended to be a realistic model of CPU processiadnead.

ecn_ Set to true to use explicit congestion notification in addition to packet drops to signal con-
gestion. Thisallows a Fst Retransmit after a quench() due to an ECN (explicit conges-
tion natification) bit.

pakeSize
The size in bytes to use for all packets from this source.

25 July 1997 19

NS(1) NS(1)

tcpip_base_hdr_size
The size in bytes of the base TCP/IP header.

tcpTick
The TCP clock granularity for measuring roundtrip timMate that it is set by default to
the non-standard value of 100ms. Measured in seconds.

bugFix_
Set to true to reme a lug when multiple dst retransmits are allowed for patk
dropped in a single wingoof data.

maxburst_
Set to zero to ignore. Otherwise, the maximum number of packets that the source can
send in response to a single incoming ACK.

slow_start_restart
Boolean; set to 1 to slow-start after the connection goes idle. On by default.

srtt_init_
Initial value for the smoothed roundtrip time estimate. Default is 0 seconds.

t_rttvar_
Initial value for the variance in roundtrip time. Default is 3 seconds.

rtxcur_init_
Initial value for the retransmitalue. Deéult is 6 seconds.

T_SRTT_BITS
Exponent of weight for updating the smoothed round-trip time t_sitefault is 3, for a
weight of 1/2°T_SRTT_BITS or 1/8.

T_RTTVAR_BITS
Exponent of weight for updatingakiance in round-trip time, t_rtav . Defult is 2, for a
weight of 1/2°T_RTTVAR_BITS or 1/4.

rttvar_exp_
Exponent of multiple of the mean\dation in calculating the current retransmélwe
t rtxcur_. Defult is 2, for a multiple of 2"rttvar_exp_ or 4.

Defined Constants

MWS The Maximum Vihdow Size in packets for a TCP connection. MWS determines the size
of an array in tcp-sink.ccThe default for MWS is 1024 paets. or Tahoe TCPthe
"window" parameterrepresenting the recer’s alvertised windw, should be less than
MWS-1. For Reno TCPthe "window" parameter should be less than (MWS-1)/2.

State Variables

dupacks_
Number of duplicate acks seen sincg aew data was acknowledged.

seqno_ Highest sequence number for data from data source to TCP.

t_seqno_
Current transmit sequence number.

ack _ Highest acknowledgment seen from rgeei
cwnd_ Current value of the congestion wind@n packets).

awnd_ Current value of a low-pass filteredrgion of the congestion windio For investigations
of different window-increase algorithms.

ssthresh_
Current value of the slow-start threshold (in packets).

25 July 1997 20

NS(1) NS(1)

rtt_ Round-trip time estimate. In seconds (expressed in multiples of tcpTick).
srtt Smoothed round-trip time estimate. In seconds (in multiples of tcpTick /8).
rttvar_ Round-trip time mean deviation estimate.

t_rtxcur_
Current retransmitalue. Inseconds.

badoff
Round-trip time exponential backafonstant.

TCP/RENO OBJECTS
TCP/Reno objects are a subclass of TCP objects that implement the Reno TCP transport protocol as
described in [7]. There are no methods, configuration parameters or state variables specific to this object.

TCP/NEWRENO OBJECTS
TCP/Nevreno objects are a subclass of TCP objects that implement a modified version of the BSD Reno
TCP transport protocol.

There are no methods or state variables specific to this object.
Configuration Parameters

newreno_changes_
Set to zero for the dafilt NewReno described in [7]. Set to 1 for additionalvReno
algorithms as suggested in [10]; this includes the estimation of the ssthresh parameter
during slow-start.

TCP/VEGAS OBJECTS
This section of the man page has not yet been written.

TCP/SACK1 OBJECTS
TCP/Sackl objects are a subclass of TCP objects that implement the BSD Reno TCP transport protocol
with Selectve Acknowledgement Extensions as described in [7].

They inherit all of the TCP object functionalityThere are no methods, configuration parameters or state
variables specific to this object.

TCP/FACK OBJECTS
TCP/Fack objects are a subclass of TCP objects that implement the BSD Reno TCP transport protocol with
Forward Acknowledgement congestion control.

They inherit all of the TCP object functionalityThere are no methods or state variables specific to this
object.

Configuration Parameters

ss-divd Overdamping algorithm. Divides ssthresh by 4 (instead of 2) if congestion is detected
within 1/2 RTT of slow-start. (1=Enable, 0=Disable)

rampdown
Rampdaevn data smoothing algorithm. Slowly reduces congestion windther than
instantly halving it. (1=Enable, 0O=Disable)

25 July 1997 21

NS(1) NS(1)

TCP/FULLTCP OBJECTS
This section has not yet been added to the man pageimplementation and the configuration parameters
are described in [11].

TCPSINK OBJECTS
TCPSink objects are a subclass of agent objects that implementverrémeil CP packts. Thesimulator
only implements "one-ay" TCP connections, where the TCP source sends data packets and the TCP sink
sends ACK padkts. TCPSinlobjects inherit all of the generic agent functionalithere are no methods
or state variables specific to the TCPSink object.

Configuration Parameters

pakeSize
The size in bytes to use for all acknowledgment packets.

maxSackBlocks
The maximum number of blocks of data that can be acknowledged in a SACK option.
For a recever that is also using the time stamp option [RFC 1323], the SACK option
specified in RFC 2018 has room to include thre€&Mdlocks. This is only used by the
TCPSink/Sackl subclass. This value may not be increased witlyinpaticular
TCPSink object after that object has been allocaté@hce a TCPSink object has been
allocated, the value of this parameter may be decreased but not increased).

TCPSINK/DELACK OBJECTS
DelAck objects are a subclass of TCPSink that implement a dela@&drécever for TCP packts. Thg
inherit all of the TCPSink object functionalityThere are no methods or state variables specific to the
DelAck object.

Configuration Parameters

interval_
The amount of time to delay before generating an aclettyment for a single paek If
another packet aws before this time expires, generate an acknowledgment immedi-
ately.

TCPSINK/SACK1 OBJECTS
TCPSink/Sackl objects are a subclass of TCPSink that implemer@ia ie8ever for TCP packts. Thg
inherit all of the TCPSink object functionalityrhere are no methods, configuration parameters or state
variables specific to this object.

TCPSINK/SACK1/DELACK OBJECTS
TCPSink/Sack1/DelAck objects are a subclass of TCPSink/Sackl that implement a del@yedk&&ver
for TCP packts. Theg inherit all of the TCPSink/Sackl object functionalifyhere are no methods or state
variables specific to this object.

Configuration Parameters

interval_
The amount of time to delay before generating an aglettyment for a single paek If
another packet awms before this time expires, generate an acknowledgment immedi-
ately.

25 July 1997 22

NS(1) NS(1)

SRM OBJECTS
SRM objects are a subclass of agent objects that implement the SRM reliable multicast transport protocol.
They inherit all of the generic agent functionalities.

$srm traffic-source source
Attach a traffic source, e.g., Application/Traffic/CBR, to the SRM agent.

$srm start
Join the multicast group, start the SRM agent and its attached traffic source.

$srm delete
Stop the SRM agent, delete all its status and detach the traffic source.

$srm trace trace-file
Write the traces generated by the SRM agentace-file The traces includes timer settings,
request and repair sending and receipts, et flated files that are notuilt into ns are
tcl/mcast/srm-debug.t¢hat permits more detailed tracing of the delay computation functions, and
tcl/mcast/srm-nam.tahat separately marks srm control messages from ddte.latter is useful
to enhance nam visualisation.

$srm loglog-file
Write the recwery statistics during each request or repaitogfile. The statistics include start
time, duration, message id, total number of duplicate requests and repairs.

$srm distance?node
Return the distance estimatenimdein this SRM agent.

$srm distancestode
Returns a list of <group membedlistance> tuples of the distances to all group members that this
node is ware of. The group member is identified as the address of the remote agent. The first
tuple is this agerg'token. Thelist can be directly loaded into a Tcl array.

Configuration Parameters

pakeSize
The data padakt size in bytes that will be used for repair messages. The default value is
1024.

requestFunction_
The algorithm used to produce a retransmission request, e.g., setting request timers. The
default value is SRM/request. Other possible request functions are SRM/request/Adap-
tive, used by the Adapte SRM code.

repairFunction_
The algorithm used to produce a repeig., compute repair timers. The delt value is
SRM/repair Other possible request functions are SRM/repair/Adeptised by the
Adaptive RM code.

sessionFunction_
The algorithm used to generate session messages. Default is SRM/session

sessionDelay
The basic interal of session messages. Slight random variation is added to this interval to
avad global synchronization of session messages. User may want to adjustridiidev
according to their specific simulation. Measured in seconds; default value is 1.0 seconds.

Cl,C2_
The parameters which control the request tirRefer to [8] for detail. The defaulalue
isCl_=C2_=20.

D1_,D2_
The parameters which control the repair tinRafer to [8] for detail. The dafilt value is
D1_=D2_=1.0.

25 July 1997 23

NS(1) NS(1)

requestBakoffLimit_
The maximum number of exponential backoffs. Default value is 5.

State Variables

stats_ An array containing multiple statistics needed by asefRM agent. Including: dupli-
cate requests and repairs in current request/repair peviedga number of duplicate
requests and repairs, request and repair delay in current request/repair peragk a
request and repair delay.

SRM/Adaptive OBJECTS
SRM/Adaptie dbjects are a subclass of the SRM objects that implement thevadgRhl reliable multi-
cast transport protocol. Thénherit all of the SRM object functionalities.

State VariablesRefer to the SRM paper by Sally et al ([11]) for more detail.

pdistance_
This variable is used to pass the distance estimate provided by the remote agent in a
request or repair message.

D1_,D2_
The same as that in SRM agents, except that dre initialized to log10(group size)
when generating the first repair.

MinC1_, MaxC1_, MinC2_, MaxC2_
The minimum/maximum values of C1_ and C2_. Default initial values are defined in [8].
These values define the dynamic rang€Ebf andC2_.

MinD1_, MaxD1 _, MinD2_, MaxD2_
The minimum/maximum values of D1_ and D2_. &éf initial values are defined in [8].
These values define the dynamic rangBbf andD2_.

AwveDups
Higher bound for @erage duplicates.

AveDelay
Higher bound for @erage delay.

eps AveDups- dupsdetermines the Weer bound of the number of duplicates, when we should
adjust parameters to decrease delay.

APPLICATION OBJECTS
Application objects generate data for transport agents to send.

FTP APPLICATION OBJECTS
Application/FTP objects produce bulk data for a TCP object to send.

$ftp start
Causes FTP to produce packets indefinitely.

$ftp produce n
Causes the FTP object to produrcpackets instantaneously.

$ftp stop
Causes the attached TCP object to stop sending data.

$ftp attach agent
Attaches an Application/FTP objectagent.

$ftp producemore count
Causes the Application/FTP object to prodooantmore packets.

25 July 1997 24

NS(1) NS(1)

Configuration Parameters

maxpkts
The maximum number of packets generated.

TELNET APPLICATION OBJECTS
Application/Telnet objects produce individual patk with interarrival times as follavs. If interval_is
non-zero, then intearrival times are chosen from an exponential distribution wittragyeinterval . If
interval_is zero, then inter-axd times are chosen using the "tcplib" telnet distribution.

$telnet start
Causes the Application/Telnet object to start producing packets.

$telnet stop
Causes the Application/Telnet object to stop producing packets.

$telnet attachagent
Attaches a Application/Telnet objectagent.

Configuration Parameters

interval_
The arerage interarrival time in seconds for paeks generated by the Applicatioeliet
object.

TRAFFIC OBJECTS
Traffic objects create data for a transport protocol to séndraffic object is created by instantiating an
object of class Application/Traffit/pewheretypeis one of Exponential, Pareto, CBR, Trace.

EXPONENTIAL TRAFFIC OBJECTS
Application/Trafic/Exponential objects generate Orf/@&ffic. During"on" periods, packets are generated
at a constant burst rate. During "off" periods, no traffic is generated. Burst times and idle timesrare tak
from exponential distributions.

Configuration Parameters

packet_size
The packet size in bytes.

burst_time__
Burst duration in seconds.

idle_time_
Idle time in seconds.

rate_ Peak rate in bits per second.

PARETO TRAFFIC OBJECTS
Application/Traffic/Rreto objects generate Onf@affic with burst times and idle times taken from pareto
distributions.

Configuration Parameters

25 July 1997 25

NS(1) NS(1)

packet_size

The packet size in bytes.
burst_time_

Average on time in seconds.
idle_time_

Average of time in seconds.

rate_ Peak rate in bits per second.
shape_ Paeto shape parameter.

CBR (CONSTANT BIT RATE) TRAFFIC OBJECTS
Application/Trafic/CBR objects generate packets at a constant rate. Dither can be added to thevdhterarri
times by enabling the "random" flag.

Configuration Parameters
rate_ Peak rate in bits per second.

packet_size
The packet size in bytes.

random_
Flag that turns dithering on and ¢dlefault is off).

maxpkts__
Maximum number of packets to send.

TRACE TRAFFIC OBJECTS
Application/Traffic/Trace objects are used to generate traffic from a trace file.

$trace attach-tracefiletfile
Attach the Tracefile objedfile to this trace. The Tracefile object specifies the trace file from
which the trafic data is to be read (see TRACEFILE OBJECTS section). Multiple Applica-
tion/Traffic/Trace objects can be attached to the same Tracefile oljeetndom starting place
within the Tracefile is chosen for each Application/Traffic/Trace object.

There are no configuration parameters for this object.

TRACEFILE OBJECTS
Tracefile objects are used to specify the trace file that is to be used for generdimgstaf TRAF-
FIC/TRACE OBJECTS section). $tracefile is an instance of the Tracefile Object.

$tracefile filenametrace-input
Set the filename from which the traffic trace data is to be reaace-input.

There are no configuration parameters for this objActrace file consists of gmumber of fixed length
records. Eachecord consists of 2 32 bit fields. The first indicates the iatemtil the next packet is gen-
erated in microseconds. The second indicates the length of the next packet in bytes.

TRACE AND MONITORING METHODS
[NOTE: This section has not been verified to be up-to-date with the rel8aaed objects are used to gen-
erate gent level capture logs typically to an output file. Throughout this section $ns refers to a Simulator
object, $agent refers to an Agent object.

25 July 1997 26

NS(1) NS(1)

$ns create-tracetype fileID nodel node2 [option]
Create a Trace object of typgpe and attach the filehandl@lelD to it to monitor the queues
between nodesodelandnode2. typean be one of Enque, Deque, Drdgngue monitors paet
arrival at a queue. Dequenonitors packt departure at a queue. Drop monitors packet drops at a
gueue. fileID must be a file handle returned by the ©pkencommand and it must ha been
opened for writing.If optionis not specified, the command will instruct the created trace object to
generate ns traces.dptionis ""'nam"" the nev object will produce nam traces. Returns a han-
dle to the trace object.

$ns drop-tracenodel node2 trace
Remwe trace object attached to the link between nadmteland node2with trace as the object
handle.

$ns trace-queuenodel node? filelD
Enable Enque, Deque and Drop tracing on the link betwedalandnode?2.

$ns namtrace-queuanodel node?2 filelD
Same function a$ns trace-queueexcept it produces nam traces.

$ns trace-allfilelD
Enable Enque, Deque, Drop Tracing on all the links in the topology created after this method is
invoked. Alsoenables the tracing of netwk dynamics. fileID must be a file handle returned by
the Tclopencommand and it must ta keen opened for writing.

$ns namtrace-allfilelD
Same function a$ns trace-all except it will produce all equélent traces in nam format. In addi-
tion, calling this commanteforethe simulator starts to run will generate color configurations (if
ary) and topology information needed by nam (nodes, links, queueskafwmpée can be found at
ns-2/tcl/ex/nam-example.tcl.

$ns namtrace-confidilelD
Assign a file to store nam configuration information, e.g., node/link/agents and some Simulator
related traces such as annotations. When you earit to trace wery object. call this function
and then us&ns namtace-queugrtModel trace etc., to insert traces inddually. Note that you
should use the same file for iaiual traces and nam configuration. An example for thisai-a
able at ns-2/tcl/ex/nam-separate-trace.tcl.

$ns monitor-queuenodel node2
Arrange for queue length of link between nodesleland node2to be trackd. Returnfueue-
Monitor object that can be queried to leaugrage queue size etc. [see QueueMonitor Objects
section]

$ns flush-trace
Flush the output channels attached to all the trace objects.

$link trace-dynamicsns filelD [option]
Trace the dynamics of this link and write the outpufitelD filehandle. nsis an instance of the
Simulator or MultiSim object that was created teoke the simulation.

25 July 1997 27

NS(1)

NS(1)

$ns colorid name
Create a color indg which links the numbed to the color nameame All colors createdefore
the simulator starts to run will be written to nam trace file, if thereyis an

$ns trace-annotatestring
Writes an annotation to ns and nam trace file, if there areTae string should be enclosed in
double quote to makit a Sngle argument.

trace_annotatestring
Another version o$ns trace-annotate which is a global function and doesrequire the caller to
know ns.

$ns duplex-link-op $nodel $node2 $op $args

Perform a gien operation$op on the gven duplex link ($nodel $node?. The following two

operations may be used:

orient -Specify the nam orientation of the duplek. Values can be
left, right, up, down, their mixture combined by '-' (e.g.,
left-down), and a number specifying the angle between the
link and the horizontal line.

gueuePos €onstruct a queue of the simpléink ($nodel
$node? in nam, and specify the angle between the
horizontal line and the line along which the queued packets
will be displayed.

$ns add-agent-traceagent name [filelD]
Write a nam trace line, which will create a trace agentfmnt when interpreted by nam. The
trace agent name will bename This nam trace agent is used towshbe position ofagent and
can be used to write nam traces of variables associated with the agent. By default traces will be
written to the file assigned mamtrace-all fileID can be used to write traces to another file.

$agent tracevar name
Label OTcl ariablenameof $agentto be traced. Then where the \ariablenamechanges alue,
a nam trace line will be written to nam trace file, if there is one. Notendmemust be the same
as the variablg’real OTcl name.

$ns delete-agent-tracagent
Write a nam trace line, which will delete the nam trace associatecgathwhen interpreted by
nam.

$agent add-var-tracename value [type]
Write a nam trace line, which creates a variable trace with mameand \alue valug when
interpreted by nantypeindicates the type of the variable, e.g., is it a list, anag pain variable.
Currently only plain variable is supported, for whighe="v'.

The following 2 functions should be calledter the simulator starts running. This can be done u$irgy
at.

$agent delete-var-tracename
Write a nam trace line, which deletes the variable tnapeewhen interpreted by nam.

25 July 1997 28

NS(1)

NS(1)

$agent update-var-tracename value [type]

Write a nam trace line, which changes the value of traggdblenamewhen interpreted by nam.
Unlike $agent tracevar, the aboe 3 unctions provide 'manual’ variable tracing, in whichriv
able tracing are done by placiiggent update-ar-trace in OTcl code, whildracevarautomati-
cally generates nam traces when the traced variable changes value.

The tracefile format is baclasd compatible with the output files in the ns version 1 simulator so that ns-1
post-processing scripts can still be usddace records of tri€ for link objects with Enque, Deque or
Drop Tracing hee the following form:

where

<code> <time> <hsrc> <hdst> <packet>

<code> := [hd+-r] h=hop d=drop +=enque -=deque r=xecei
<time> := simulation time in seconds

<hsrc> := first node address of hop/queuing link

<hdst> := second node address of hop/queuing link
<packet> := <type> <size> <flags> <flowlD> <src.sport> <dst.dport> <seq> <pktID>
<type> := tcpltelnet|cbr|ack etc.

<size> := packet size in bytes

<flags> := [CP] C=congestion, P=priority

<flowID> := flow identifier field as defined for IPv6
<src.sport> ;= transport address (src=node,sport=agent)
<dst.sport> ;= transport address (dst=node,dport=agent)
<seq> := packet sequence number

<pktID> := unique identifer forvery new packet

Only those agents interested in providing sequencing will generate sequence numbers and hence
this field may not be useful for packets generated by some agents.

For links that use RED gateys, there are additional trace records as follows:
<code> <time> <value>
where

<code> := [Qap] Q=queue size, &em@mge queue size,
p=packet dropping probability

<time> := simulation time in seconds

<value> := value

Trace records for link dynamics are of the form:
<code> <time> <state> <src> <dst>
where

<code> :=|v]

<time> := simulation time in seconds
<state> := [link-up | link-down]

<src> := first node address of link
<dst> := second node address of link

INTEGRATOR Objects

Integrator Objects support the approximate computation of continuoggalgtaising discrete sum3.he
running sum(integral) is computed as: sum_ flasty * (x - lastx_)] where (X, y) is the last element
entered and (lastx_, lasty) was the elementipue to that added to the sum. lastx_ and lasty are

25 July 1997 29

NS(1)

NS(1)

updated as meelements are added. The first sample point defaults to (0,0) that can be changed by chang-
ing the values of (lastx_,lasty).

$integrator newpoint x y
Add the point (x,y) to the sum. Note that it does noterkse for x to be less than lastx_.

There are no configuration parameters specific to this object.
State Variables
lastx_ x-coordinate of the last sample point.
lasty y-coordinate of the last sample point.
sum_ Running sum (i.e. the integral) of the sample points.

SAMPLES Objects

Samples Objects support the computation of mean and variance statistics/éorsample.

$samples mean
Returns mean of the sample.

$samples variance
Returns variance of the sample.

$samples cnt
Returns a count of the sample points considered.

$samples reset
Reset the Samples object to monitor a fresh set of samples.

There are no configuration parameters or state variables specific to this object.

BUILTINS

[NOTE: This section has not beeerified to be up-to-date with the releasBgcausedTcl is a full-fledged
programming language, it is easy to build higlelsimulation constructs from the ns primigs. Seeral
library routines hee keen built in this \ay, and are embedded into the ns interpreter as methods of the Sim-
ulator class. Throughout this section $ns represents a Simulator object.

$ns create-connectiorsrcType srcNode dstType dstNode class
Create a source agent of tygre Typeat nodesrcNodeand connect it to a destination agent of type
dstTypeat nodedstNode.Also, connect the destination agent to the source agent. The traffic class
of both agents is set tdass. This method returns the source agent.

EXAMPLE

set ns [ne& Simulator]

#
Create tvo nodes
#
set n0 [$ns node]
set nl [$ns node]

#

Create a trace and arrange for all the trasats of the
links subsequently created to be dumped to "out.tr"
#

set f [open out.tr w]

$ns trace-all $f

25 July 1997 30

NS(1) NS(1)

#

Connect the tw nodes with a 1.5Mb link with a transmission
delay of 10ms using FIFO drop-tail queuing

#

$ns duplex-link $n0 $n1 1.5Mb 10ms DropTalil

#

Set up BSD Tahoe TCP connections in opposite directions.
#

set tcp_srcl [ne Agent/TCP]

set tcp_snkl [ne Agent/TCPSink]
set tcp_src2 [ne Agent/TCP]

set tcp_snk2 [ne Agent/TCPSink]
$ns attach-agent $n0 $tcp_srcl
$ns attach-agent $nl $tcp_snkl
$ns attach-agent $n1 $tcp_src2
$ns attach-agent $n0 $tcp_snk2
$ns connect $tcp_srcl $tep_snkl
$ns connect $tcp_src2 $tep_snk?2

#
Create ftp sources at the each node
#
set ftpl [$tcp_srcl attach-source FTP)
set ftp2 [$tcp_src2 attach-source FTP)

#

Sart up the first ftp at the time 0 and

the second ftp staggered 1 second later
#

$ns at 0.0 "$ftpl start"
$ns at 1.0 "$ftp2 start"

#

run the simulation for 10 simulated seconds
#

$ns at 10.0 "exit 0"

$ns run

DEBUGGING
To enable debugging when building ns from source:
% Jconfigure --enable-debug
% make

For more details about ns debugging please see <http://www-mash.cs yekgles/ns-debugging.htmi>.

DIFFERENCES FROM NS-1
In general, more compteobjects in ns-1 ha keen broken down into simpler components for greateir fle
bility and composability Details of differences between ns-1 and ns-2 can be found at <http://www-
mash.cs.berkejeedu/ns/ns.html>.

25 July 1997 31

NS(1) NS(1)

HISTORY
Work on the LBL Network Simulator lgen in May 1990 with modifications to S. eshav’s
(kesha@research.att.com) REAL network simulatahich he deeloped for his Ph.D. work at U.C.
Berkelg.. In Summer 1991, the simulation description languages weamped, and laterthe NEST
threads model was replaced with aerg driven framevork and an efficient scheduleAmong other con-
tributions, Sugih Jamin (jamin@usc.edu) contriial the calendar-queue based scheduling code toethis v
sion of the program, which was knowntapsim. In December 1994, McCanne ported tcpsim to C++ and
replaced the yacc-based simulation description language with a Tcl interface, and added preliminary multi-
cast supportAlso at this time, the name changed frtopsimto the more generins. Throughout, Flgd
has made modifications to the TCP code and added additional source models foedtigations into
RED atevays, resource management, class-based queuing, explicit congestion notification, fiend traf
phase décts. Many of the papers discussing these issues asilable through URL http://www-
nrg.ee.lbl.gov/.

SEE ALSO
Tcl(1), tclsh(1), nam(1), otclsh

[1] S. Kesha, “REAL: A Network Simulator. UCB CS Tech Report 88/472, December 198%&e
http://minnie.cs.adfa.oz.au/REAL/index.html for more information.

[2] Floyd, S. and Jacobson,. VRandom Early Detection agevays for Congestion yoidance.
IEEE/ACM Transactions on Networking, Vol. 1, No. 4. August 1993. pp. 397-#lGilable
from http://www-nrg.ee.lbl.gov/floyd/red.html.

[3] Floyd, S. Simulator @sts. July 1995. URftp://ftp.ee.Ibl.gov/papers/simtests.ps.Z.

[4] Floyd, S., and Jacobson, On Traffic Phase Hécts in Rcket-Switched Gatgays. Internetwork-
ing: Research and Experience, V.3 N.3, September 1992. pp. 115-156.

[5] Floyd, S., and Jacobson, Yink-sharing and Resource Management Models éokét Networks.
IEEE/ACM Transactions on Networking, Vol. 3 No. 4, August 1995. pp. 365-386.

[6] Floyd, S., Notes of Class-Based Queueing: Settiagaieters. URIitp://ftp.ee.Ibl.gov/papers/
params.ps.Z. SeptemhE995.

[7] Fdl, K., and Floyd, S. Comparisons of Tahoe, Reno, and Sack Dé&ember 1995. URL ftp://
ftp.ee.Ibl.gov/papers/sacks.ps.Z.

[8] David Wetherall and Christopher J. Linblad. Extending Tcl for Dynamic Object-Oriented Pro-
gramming. InProceedings of the USENIX Tcl/Tk Workshop, Toronto, Ontario, USENIXy,
1995. At<http://www.tns.lcs.mit.edu/publications/tcltk95.djw.html>.

[9] M. Shreedhar and G.awghese. Efficient Fair Queueing Using Deficit Round Robin. In Proc. of
SIGCOMM, pp. 231-242, 1995.

[10] Hoe, J., Improving the Start-up Behavior of a Congestion Control Scheme for imCHG-
COMM 96, August 1996, pp. 270-280.URL http://wwwacm.org/sigcomm/sig-
comm96/papers/hoe.html.

[11] Fdl, K., Floyd, S., and Henderson, T., Ns Simulator Tests for Reno FullTGRL
ftp://ftp.ee.lbl.ge/papers/fulltcp.ps. July997.

[12] Floyd, S., Jacobson, \M.iu, C.-G., McCanne, S. and Zhang, L., A Reliable Multicast Frarie
for Light-weight Sessions and ApplicationMebFraming. © gopear in IEEE/ACK Transaction on
Networking, Nowember 1996. ftp://ftp.ee.lbl.gov/papers/srml.ps.gz

[13] Fdl, K., and Varadhan, K., (eds.), "Ns notes and documentatiaork im progress.http://www-
mash.cs.berkejeedu/ns/nsDoc.ps.gz

Research using ns is on-going list of recent research contributions employing ns can be found at
<http://www-mash.cs.berketledu/ns/ns-research.html>.

25 July 1997 32

NS(1) NS(1)

Work on ns is on-going.Information about the most recent version igilable at <http://www-
mash.cs.berkejeedu/ns/ns.html>.

A mailing list for ns users and announcements is alsailable, send mail to ns-users-
request@mash.cs.berkgkdu or ns-announce-request@mash.csabgrkdu to join. Questions should be
forwarded to ns-users; ns-announce will be low-traffic announcements only.

AUTHORS
Steven McCanne (mccanne@ee.lbl.gov), \amsity of California, Berkley and Lawrence Bemdey
National LaboratoryBerkelg, CA, and Sally Floyd (flgpd@ee.Ibl.gw) Lawrence Berkley National Labo-

ratory, Berkelg, CA. A complete list of contributors to ns is at <http://www-mash.csdbgrkedu/ns/ns-
contributors.html>.

BUGS
Not all of the functionality supported in ns-1 has been ported to ns-2.

This manual page is incomplete.

25 July 1997 33

