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1 Introduction

Themin sum set covgimssc) problem is a problem related both to the classiai
set coveiproblem, and to the linear arrangement problems.

There are two equivalent ways by which we describe our problems. In one of them,
S is a set of points, and® = {51, 55,...,5s} is a collection of subsets &f. An
equivalent representation is via a hypergraph with verteX’sahd hyperedge sét.

The hyperedges of the hypergraph correspond to the points in the set system, and the
vertices of the hypergraph correspond to the subsets. A hypergraptnigorm if

every hyperedge contains exactlyertices. Likewise, we call a set systeruniform

if every point appears in exactlysubsets. A hypergraph isregular if every vertex

has degreel, namely, is contained in exactty hyperedges. Likewise, we call a set
systemd-regular if every subset is of cardinalitly

Min sum set cover(mssc). Viewing the input as a hypergraghi(V, E), a linear
ordering is a bijectiorf fromV to {1, ...,|V|}. For a hyperedge and linear ordering
f, we definef(e) as the minimum off (v) over allv € e. The goal is to find a linear
ordering that minimizey ", f(e).

We note that minimizing the sum gf(e) is equivalent to minimizing the average
of f(e). So another way of viewingsscis as that of seeking a linear arrangement of
the vertices of a hypergraph that minimizes the average cover time for the hyperedges.

An important special case aisscis the following.

Min sum vertex cover(msvc). The hypergraph is a gragh(V, E). (Equivalently,
in the set system representation, every point belongs to exactly two subsets.) Hence one
seeks a linear arrangement of the vertices of a graph that minimizes the average cover
time of the edges. Linear arrangement problems on graphs often come up as heuristics
for speeding up matrix computation. And indeeasvc came up in ([4], Section 4)
in the context of designing efficient algorithms for solving semidefinite programs, and
was one of the motivations for our work.

Another problem that in a sense is a special casagscis the following.

Min sum coloring. The input to this problem is a graph. The output is linear
ordering of its independent sets, or equivalently, a legal coloring of its vertices by
natural numbers. The objective is to find such a coloring that minimizes the sum of
color-numbers assigned to vertices. Given an input gi@fi{f¥’, E’), one can cast
the min sum coloring problem as amsscproblem as follows. The vertices of the
hypergraphH are the independent sets@f, and the hyperedges of the hypergrdph
are the vertice¥”’. Note however that the size of the hypergrdphvould typically be
exponential in the size of the grapH. Min sum coloring has been extensively studied
in the past and many of the results carry oventssc. We shall later mention the
results of [2, 3].

All the above problems are NP-hard, and we shall study their approximability.

1.1 Related work

We are not aware of previous work on the min sum set cover problem. Regarding min
sum vertex cover, this problem was suggested to us by the authors of [4]. They use
a greedy algorithm that repeatedly takes the vertex of largest degree in the remaining



graph as a heuristic fansvc. The problemmsvc itself is used as a heuristic for
speeding up a solver for semidefinite programs.

Min sum coloring was studied extensively. It models the issue of minimizing aver-
age response time in distributed resource allocation problems. The vertices of the un-
derlying graph (the so-callezbnflict graph represent tasks that need to be performed,
and an edge between two vertices represents a conflict — the corresponding tasks cannot
be scheduled together. Part of the difficulty of the min sum coloring problem is that
of identifying the independent sets in the conflict graph, which makes it more difficult
thanmssc(where the underlying hypergraph is given explicitly). In [2] it is observed
that min sum coloring is hard to approximate within a ratio6f < for everye > 0,
due to the hardness of distinguishing between graphs that have no independent sets of
sizen® and graphs that have chromatic number beldvwhich is shown in [8]). This
hardness result does not applynssc.

In [2] it is shown that the greedy algorithm that iteratively picks (and removes) the
largest independent set in the graph approximates min sum coloring within a factor 4.
This algorithm can be applied for certain families of graphs (such as perfect graphs),
and also in the case afssc(where of course we iteratively pick the vertex with largest
degree in the remaining hypergraph). We observe that the proof in [2] of the factor
4 approximation applies also tmssc(and not just to the special case of min sum
coloring). Hencemsscis approximable within a factor of 4.

In [3] examples are shown where the greedy algorithm does not approximate min
sum coloring within ratios better than 4, showing the optimality of the analysis in [2].
We observe that the proof given there also applies to the use of the greedy algorithm
for min sum vertex cover (which is the algorithm used in [4]).

There are close connections betwasasscand set-cover. For problems related
to set cover, tight approximation thresholds (up to low order terms) are often known.
Examples includén » for min set cover andl — 1/e) for max k-cover [6],1lnn for
the Domatic Number [7], roughly/n for maximum disjoint packing of sets (a result
published in the context of auction design). This is some indication that one may
be able to find a tight approximation threshold fossc. However, let us point out
a major difference betweemsscand other problems related to set cover. Given an
instance oimsscwhich is composed of two disjoint instances, the optimal solution is
not necessarily a combination of the optimal solutions to each of the sub-instances.
(For example, consider a gragh on 9 verticesu, vy, wy, . . ., v4, w4 iN Which vertex
u is connected as a star to vertiegs. . . , v4, and for everyl < i < 4, v; is connected
to w;. The optimal solution tonsvc first usesu to cover 4 edges, and then covers
the remaining edges one by one. However, if we consider a graphat is the disjoint
union of G; andGs», whereGs, is a graph consisting of three isolated edges, the optimal
solution formsvc becomes to first take, ..., v4, and then cover the three edges of
G, one by one.) This makes it more difficult to design and analyze algorithms for
mssc. In particular, we do not even know if there is a polynomial time algorithm
for min sum vertex cover when the underlying graph is a tree (whereas min vertex
cover is polynomial time solvable on trees.) As we shall later see, the hardest instances
for mssc(in terms of approximation ratio) have different properties than the hardest
instances for min set cover. A major difference (already manifested in [3]) is that they
are not regular.



1.2 New results

The main result regarding the approximation of min sum set cover is the following.

Theorem1l 1. The greedy algorithm approximates min sum set cover within a ratio
no worse than 4.

2. For everye > 0, it is NP-hard to approximate min sum set cover within a ratio
of4 —e.

As noted earlier, the first part of Theorem 1 was essentially already proved in [2]. In
[10] we presented a simpler alternative proof (inspired by the primal-dual approach for
approximation algorithms based on linear programming). The proof presented here is a
further simplification of the proof from [10]. We also show that this proof in fact works
for a related version of thensscproblem. This version is called thEmsscproblem
and is considered after the proof of Theorem 4 in Section 2.

The second part of Theorem 1 is proved by modifying a reduction of [6], and com-
bining it with ideas from [3].

For min sum vertex cover, we observe that the results of [3] imply that the greedy
algorithm does not approximate it within a ratio better than 4. We then show:

Theorem?2 1. An approximation algorithm based on linear programming approx-
imates min sum vertex cover within a ratio of 2.

2. There exists a constant > 1 such that min sum vertex cover is NP-hard to
approximate within a ratio better tham

The first part of Theorem 2 is proved by using a linear programming relaxation
for msvc, and rounding it using a randomized rounding technique. We conjecture
that the integrality ratio of the linear programming is in fact better than 2, and that
our approximation ratio fomsvccan be improved upon by using a more sophisticated
rounding technique.

Our last set of results relate to the special casesgcinstances om-uniform d-
regular instances. We observe that on such instamssscan be approximated within
a ratio of2r/(r 4+ 1). For large values of, this approximation ratio tends to 2. For
msvc (wherer = 2), this approximation ratio id/3. Our main extensions of these
results are as follows:

Theorem3 1. For everye > 0, there existr, d such that it is NP-hard to approx-
imate min sum set cover within a ratio better tRat e on r-uniform d-regular
hypergraphs.

2. For somep < 4/3 and everyl, min sum vertex cover can be approximated within
a ratio of p ond-regular graphs.

The first part of Theorem 3 is obtained as part of the proof of the second part of
Theorem 1. The proof of the second part of Theorem 3 uses semidefinite programming.



2 The greedy algorithm

Let H(V, E) be a hypergraph on which we wish to approximate min sum set cover. The
greedy algorithm produces a sequence of vertices that cover all hyperedges as follows.

1. Initialize ¢ = 1.
2. While hypergraphf{ has an edge do

(a) Takew; to be a vertex of maximum degree ih.
(b) UpdateH by removingv; and all hyperedges incident with it froid.
(c) Increment.

Theorem4 The greedy algorithm approximates min sum set cover within a ratio no
worse than 4.

Proof: Let opt denote the optimal value of the min sum set cover problem. Let
greedydenote the value returned by the greedy algorithm.

Fori=1,2,..., let X; denote the set of edges first covered in stbp the greedy
algorithm. LetR; = E — U;;ll X; be the set of edges not covered prior to stedote

thatgreedy= >""_, i|X;|, and equivalently

greedy= > |R| @)
i=1
Define foreveryl < < n, P, = “f;\
pe = Pi. Now we defineprice = 3, ..
Summing the price over sefs;,

price = 3~ 1X,17, = Y 1l 1 = 3 IR @)

Proposition 5 For the assignment of prices given abopgce = greedy.

For every edge € X, define itsprice as

Proof: Follows by comparing equations (1) and (2).
Proposition 6 For the assignment of prices given abowept > price/4.

Proof: Consider the following diagram (see Fig. 1 for an illustration) correspond-
ing to the optimal solution. There arE| columns, one for every edge, where the edges
are ordered from left to right by the order in which they were covered by the optimal
algorithm. The height of a column is the time step at which it was covered by the op-
timal algorithm. Hence we get a histogram with nondecreasing integer heights. The
total area beneath this histogram is exaoby.

Consider now another diagram corresponding to the greedy solution. Again there
are|E| columns, one for every edge, and in analogy to the previous diagram, the edges
are ordered by the order in which they were covered by the greedy solution. But unlike
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the previous diagram, the height of a column is not the time step by which the edge
was covered, but rather its price. Hence the heights need not be integer, and need not
be monotone. The total area of the histogram is exaribe.

We want to show that the area of the second histogram is at most four times that of
the first. To do this we shrink the second histogram by a factor of four as follows. We
shrink the height of each column by a factor of two. Hence column heights. a2e
We shrink the width of each column by a factor of two. Hence the total width of the
second histogram is nol#|/2. We align the second histogram to the right. Namely, it
now occupies the space that was previously allocated to colURifg + 1 up to|E|
(assume for simplicity of notation and without loss of generality th4is even). Now
we claim that this shrunk version of the second histogram fits completely within the
first histogram, implying that its total area is no more than that of the first histogram.
This suffices in order to prove Proposition 6.

Consider an arbitrary point in the original second histogram, letbe the edge
to which it corresponds, and lédenote the time step by which the greedy algorithm
covered edge. Then the height of is at mosp. = | R;|/| X;|, and distance af from
the right hand side boundary is at m¢&;|. The shrinking of the second histogram
mapsq’ to a new poing. We now show thay must lie within the first histogram. The
height ofq (which we denote by) satisfies: < | R;|/2|X;|, and the distance gffrom
the right hand side boundary (which we denote-pgatisfies: < |R;|/2.

For this pointg to lie within the first histogram, it suffices to show that by time step
h (rounded down to the nearest integer), at leastiges (rounded up to the nearest
integer) are still uncovered by the optimal algorithm. Consider now only the edges in
the setR;. No vertex whatsoever can cover more thah| edges fromR;. (This last
assertion is the only place in our proof where we use the property of the greedy algo-
rithm.) Hence in| k] time steps the optimal could cover at most | X;| < ||R;|/2]
edges fromR;, leaving at leasf|R;|/2] > [r] edges ofR; uncovered. Hence the
pointq indeed lies within the first histograrl

Summing up:

opt > price/4 = greedy/4

where the inequalities follow from Propositions 6 and 5 respectively. This completes
the proof of Theorem 4.1

In [3] it is shown that for every > 0, there are instances of min sum set cover
for which the approximation ratio of the greedy algorithm is no better thane.
(Technically, this result is stated for min sum coloring, but it applies also to min sum
set cover which is a more general problem.) See also Proposition 8.

e The f-mssc problem

We observe that the above analysis can in fact be used to guarantee the same factor
of approximation for the following related problem. Rbk f < 1, let f-msscbe the
msscproblem in which we only charge for the firStE| edges that are covered, and we
charge nothing for the remainirig — f)| E| edges. (This problem is in turn related to a
problem studied in [5]. However, in [5] the remainifig— f)| F| edges are charged the
same as th¢|E|th covered edge.) It is easy to see that the worst case approximation
ratio of greedy onf-mssccannot be better than that emssc. (Given an instance of



msscwith m edges, one can reduce it to an instancg¢-afisscby adding(1 — f)m/ f
auxiliary edges that can only be covered one by one.) The following theorem shows
that it is no worse.

Theorem7 The greedy algorithm approximatgsmsscwithin a ratio no worse than
4.

Proof: The proof is similar to that of Theorem 4. We shall just point out the
differences.

e The price of an edge covered by sek; is now

_ R - (A= fIE]
| X

P

if e is among the firs§f| E| edges covered by the greedy algorithm, and 0 other-
wise.

e The first histogram is 0 beyond colunfZ|.

e The shrunk version of the second histogram is aligned with the first histogram so
that (the end of) columng|E| coincide. Beyond this column, both histograms
are 0.

As before, consider a poimtin the nonzero part of the shrunk second histogram.

|Ri| — (1= f)IE]

2|X;|

[Ri| — (1 = N)IE]
2

The height ofq is at mostt = . The distance of; from column

numberedf|E| is at most , and the distance @ffrom the righthand

side boundary i$1 — f)| E| more, namely, at mogfﬁi‘ a (12_ fﬂE'. By time step,

|7 = (1= )l B edges fromRk;. Hence

[Ri| + (1= f)|E]
2

the optimal solution covers at mastX;| =

the number of uncovered edges frdg is at least . Henceq lies

also inside the first histogram.
O

3 Min sum vertex cover

As noted earlier, Bar-Noy et al [3] provide an example showing the tightness of anal-
ysis of factor 4 for the greedy algorithm on min sum coloring. As shown below, the
same construction can be used to describe a bipartite multigraph on which the greedy
algorithm performs no better than a factor ¢ of the optimal algorithm to solve the
msvc problem. Moreover, this multigraph can be further modified to give a simple
graph.

Proposition 8 There exist simple bipartite graphs on which the greedy algorithm per-
forms no better than a factar — o(1) of the optimal algorithm for thensvcproblem.



Proof: First we comment on the construction of the bipartite multigraph, and then
we describe how to convert it into a bipartéenplegraph without altering (up to at
least the first order terms) the performance of either the greedy or the optimal.

Since the following construction and the algorithmic analysis involved are very
much based on “the chopping procedure” of Bar-Noy et al (see Sections 2 and 5 of
[3]), we keep the discussion brief. The resulting bipartite multigi@pk (U UV, E)
will have the property that one of the greedy solutions ends up always picking
vertices fromU in the order of decreasing degrees to cover all the edges, while
it is much better to cover the edges by always choosing the vertices ¥roim
the order of decreasing degrees. For arbitrary> 1, and arbitraryn > 1, a
multigraph with the above feature can be constructed with the additional properties

xr T x T
that the d fi e, ———, — d that ofU i
at the degree sequence Wfis (;1:,1:,4, 9’ ,(n_1)2,n2) an at ofU is

r r r X x x x x
( T o1 D n2,...,n2),wherethedegre§5 appears
n + 1 times inU.

To describe the edge structure Gflet us start (as in [3]) with a matrix whose
columns are indexed by the elementsiof Each column will have a stack of 0's
sitting on top of a stack of 1's. Let column O havel's in it and forl < i < n, let
columni have 7z 1's in it; the number of 1's in each column representing the degree
of the corresponding vertex &f. We will systematically pick 1’'s from these columns
and assign them to the vertices @f The 1's are always picked from the topmost
row first, and within each row, from the rightmost 1 moving to the left. We replace
the 1's by 0’s after they are picked. In general, the number of 1's picked injstep
equal to the number of 1's in the first column in stepHowever, once we arrive at
equal number of 1'’s in every column, we just take those column sizes as the remaining
degrees fot/. Finally, the 1's assigned to the verticeslohave the interpretation that
the numben;; of 1's picked from a particular columiin step; (for the sake of vertex
j of U) is precisely the multiplicity of edges between the corresponding verticEs of
andV. As a toy example, the reader may check that the above procedure applied to
the degree sequen¢gg, 36,9, 4) of V' (with z = 36 andn = 3), gives the sequence
(36,18,9,6,4,3,3,2,1,1,1,1) for U.

For arbitraryx andn, using the general degree sequencedfandU stated above,
it can be verified that choosing the verticedoin the order of non-increasing degrees
yields that

n ) T
opt <z + Zl(z + 1)2—2 < (Hp +2.65)x,
minding the notation tha}_"_, (1/i) = H,, and the computation thf"_ (1/i?) <
1.65). On the other hand, it can also be checked that the greedy algorithm could indeed
choose vertices df (also in the order of non-increasing degrees) and sustain a cost of

n—1

greedy = 22171 Z z—l—l ZLLZLQIJ”’I

i=1 =1

> (4H, —0,65)z,



establishing the tightness of factor 4.

To convert the above into a simple graph one may proceed as followsk het
the maximum multiplicity of any edge in the multigraph. The vertex set of the simple
graph is obtained by replacing every verteaf the multigraph by a cluster @fvertices
vo, . . ., Up_1 (regardless of the number of edges connectedand their multiplicity).

The edge set of the simple graph is as follows. Within a cluster there are no edges.
For every edgé€u, v) of the original graph, we put a complete matching between the
respective clusters — we put tkeedgesu;, v;) for 0 < i < k — 1. If edge(u,v) had

a multiplicity of ¢, we putq edge-disjoint matchings between the clusters, namely, for
every0 < i < k—1andevend < j < ¢—1we putthe edgéu;, v;1;) (Wherei+jis
computed modul@). Asq < k, all these edges are distinct, and more over there are no
parallel edges. This completes the description of the simple graph. Note that for each
vertexv; in the simple graph, its degree is equal to the degree (counting multiplicities)
of its origin vertexv in the multigraph.

It is not hard to see that the greedy algorithm in the simple graph copies its actions
on the multigraph, systematically covering clusters one by one. Likewise, the optimal
solution on the multigraph transforms into a solution that covers cluster by cluster on
the simple graph. The ratio between the value of the solutions remains unchanged up to
low order terms. (Observe that the ratio would have stayesthangedad we defined
the cost of an edge covered at stegst — 1/2 rather than as. Then the cost of each
solution simply multiplies by:2. But as we chargefor an edge covered at stepthis
adds a small error term which is negligible for large enotighs in the paper of Bar-

Noy et al, only a small fraction of the edges are covered in the first few steps, making
the overall deviation from the ratio of 4 negligible.) Hence the greedy algorithm does
not approximate min sum vertex cover within a ratio better than 4.

We now show a different algorithm that does approximate min sum vertex cover
within a ratio better than 4.

Consider the following integer program for min sum vertex cover. The indices
andj run over all vertices. The indexruns over all time steps. The variablg is an
indicator variable that indicates whether verigs chosen at step y;;; is an indicator
variable that indicates whether edgej) is still uncovered before step

Minimize Z(m.)eE >+ Yijt subject to

. z; € {0,1}. (Integrality constraint.)
. yije € {0,1}. (Integrality constraint.)

. >y < 1. (In every time step, at most one vertex is chosen.)

A W N P

Yijt > 1=, (i +x;5¢). (An edge is uncovered at the beginning of titne
unless one of its endpoints was covered at a previous time step.)

The integer program is relaxed to a linear program by relaxing the integrality con-
straints to) < z;; < 1 and0 < y;;; < 1. Clearly, the linear program (that is solvable
in polynomial time) provides a lower bound for min sum vertex cover.



We propose a procedure for rounding a fractional solution of the linear program.
The procedure is randomized and produces an integer solution with expected value at
most twice that of the linear program. We note that the rounding technique can be
made deterministic using the method of conditional expectation.

The rounding technique works in two stages. The first stage is performed indepen-
dently for each vertex. Consider verteand the fractional variables; fort > 1. Let
t; be that value ot’ for which ), _,, z;; < 1/2and},_,, x;; > 1/2. (If no such
t’ exists, namely) ", z;; < 1/2, then lett; = co.) Now introduce new variables;,
wherez;, = 2z, fort < t;, z;, = 1 — ZK“ zit, andz;; = 0 for ¢t > ¢;. Note that
>+ 2zt < 1. Now randomly choose at most one valuetpfvhere value is chosen
with probability z;;. For the chosen, x;; is rounded to 1, and for all other valuestof
x4 is rounded to 0. Let;; denote the rounded values obtained by this procedure.

The outcome of the first stage of the rounding technique satisfies the integrality
constraints for the;; (constraint 1) but may violate constraint 3. In the second stage
of the rounding technique we scan the time steps one by one. For time, d&tp
sy = . Ty Replace time step by s, time slots. Now allocate the verticesor
which z;; = 1 to these time slots in a random order. (The valuefof whichz;; = 1
is shifted to the respective time slot.) Now constraint 3 is satisfied, because each time
slot has exactly one vertex assigned to it.

Given values fotz;; that satisfy constraints 1 and 3, a 0/1 assignment tgthas
derived in a straightforward way (ignoring the assignment originally given to them by
the fractional solution). This completes the description of the rounding procedure.

Lemma9 The expected value of the rounded solution to the LP is at most twice the
fractional value of the LP.

Proof: Consider an arbitrary edde, j) and an arbitrary time steip The contribu-
tion of this to the fractional solution ig;; > 1—>",, _, (x4 + ;). We will compare
this to the expected constribution of edggej) to time stept in the rounded solution.
This contribution is a product of two factors:

1. The probability that edgé, j) is not covered before time step

2. Conditioned on edgéi, j) not being covered before time stépthe expected
number of time slots within time step (Note that we will be comparing time
stept of the fractional solution to all time slots derived from it, rather than to
time slot¢.) Here there is subtlety involved. The number of time slots under
consideration is not exactly; (the number of time slots into which time step
is transformed). There is the possibility that in the rounded solution édge
was first covered in time step Then the particular time slot within time step
in which (¢, j) was covered is random, and later time slots need not be counted.

For the first factor, we compute the probability that edige) is not covered by the
rounded solution before time This probability is

(1- Z zir)(1 — Z Zjer) < Yijt

t'<t t'<t

10



where the inequality follows from the relation,,, _, z;;» = min[1,23 ", _, ], and
from constraint 4.

For the second factor (the value §f and the random order within the time slots)
we introduce two new random variables(for “rest”) andw (for “waiting time”). r
counts the number of vertices other thaand; that are rounded to 1 at time stepw
counts the number of relevant time slots within time stéfhose at the beginning of
which edge(i, j) is not yet covered). We are interested in the expectatian.ofhe
value of this expectation can be expressed as a functien taking into acount also
the random order of time slots within a time step. We obtain:

o If z;; = 2;; =0, thenr = s, andw = r.

o If z;; = 0andz;, =1, 0rz; = 1andz;, = 0, thenr = s, — 1 andE[w] =
1+ Er]/2.

o If 2,y =2; =1,thenr =5, —2andE[w] =1+ E[r|/3.

Now E[r] = Zk#j E(Zg) = Zk;ﬁz‘,j 2 < 221@51‘,]‘ zr: < 2, due to constraint 3.
It follows that in all case€’[w] < 2. Hence, altogether the contributiongf; to the
rounded solution is at mo&y; ;.

Using the linearity of expectation (over all;;), the expected value of the rounded
solution is at most twice that of the fractional solution.

O

The analysis of the rounding technique is essentially best possible. This can be
verified by considering a graph composed of disjoint edges. The fractional solution
can cover edge by edge by giving its two endpoints weight 1/2. The rounded solution
will then take both endpoints, paying twice as much. We conjecture that a different
rounding techniques for the same LP can give an approximation ratio better than 2.
Moreover, we suspect that using semidefinite programming rather than linear program-
ming can further improve the approximation ratio. This we can show for the special
case of regular graphs. The integrality ratio of the LP is 4/3 (on a clique), whereas
semidefinite programming gives a better approximation ratio (see Theorem 11).

4 Regular hypergraphs

Let H be anr-uniform, d-regular hypergraph. That is, each hyperedge contains exactly
r vertices, and each vertex has degfied et n denote the number of vertices and
the number of hyperedges. (Cleartyy = dn.)

For every such hypergraph, the optimal value of min sum set cover is atiégst,
because at most hyperedges are covered per step, and at this rate, it takes
steps to cover all hyperedges. Hence the average number of steps until a hyperedge is
covered is at least:".

On the other hand, the optimal solution has value at mﬁ%}l This can be seen
as follows. Consider a random permutation of all vertices. Then for every hyperedge,
the expected step in which it is first covered is exagtﬂt. (This last statement can be
proven by considering a random cyclic permutatiomof 1 elements, of which + 1

11



are special. Now select at random which of thel special elements marks the start of
the permutation on the rest of theelements, and the otherspecial elements are the
vertices that compose the hyperedge. Then over the choice of where the permutation
starts, the expected number of steps until another special element is reached is exactly
(n+1)/(r +1).) Hence there is some ordering of the vertices for which the average
time to cover a hyperedge is at mqs%. Moreover, the greedy algorithm produces
such an ordering. (One way of seeing this is that the method of conditional expectations
produces the greedy algorithm as a derandomization of the randomized algorithm.)
The above proves the following theorem.

Theorem 10 For everyr-uniform d-regular hypergraph, the approximation ratio of
the greedy algorithm for min sum set cover is no worse tl;@q In particular, the
approximation ratio of the greedy algorithm for min sum vertex cover on regular graphs
is no worse thart /3.

As r gets larger, the approximation ratio of the greedy algorithm-amiform
regular hypergraphs approaches 2. This cannot be significantly improved unless P=NP,
as we shall see in Theorem 12. However, for the special case-df (regular graphs),
we can improve over the greedy algorithm.

Theorem11 There is some constaht< p < 4/3 such that min sum vertex cover can
be approximated within a ratio gf on regular graphs.

Proof: The central algorithmic tool used in our proof is semidefinite programming.
The presentation of the algorithm is greatly simplified (perhaps at some loss in the
approximation ratio) by using in a “blackbox” manner previous results regarding the
use of semidefinite programming for theaxk-vertex coveproblem. For some fixed
e > 0, if the average step by which the optimal solution covers an ec@e%)n, then
the greedy algorithm achieves an approximation rati§ ef Q(e) < 4/3, as desired.
Hence we can assume that the optimal solution covers at(least)m edges im/2
steps. This means that there is a set (i vertices that covergl — ¢)m edges.

Apply now an algorithm for thenaxk-vertex coveproblem withk = n/2, which
asks for a set of: vertices that covers as many edges as possible. As shown in [9]
(and improved later by others), whén= n/2 this problem can be approximated
(using semidefinite programming) within ratios strictly better than 4/5, $&y+ 9.
(Using [11] we can také = 0.0452.) Hence we can find in polynomial time a sebf
n/2 vertices that cover at leagt -+ 5 — €)m edges. We take < 6/2, giving (3 + $)m
edges.

Now cover all edges by first taking all vertices $fin a random order, and then
taking the rest of the vertices in a random order(igﬁrk %) fraction of the edges are
covered on average by stép The rest of the edges are covered on average at step
5+ %% = % Computing a weighted average, the average time to cover an edge is
(3 — Q(9))n. This gives an approximation ratio §f— (5) < 4/3, as desired.

O
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5 Hardness of approximation

Theorem 12 For everye > 0, it is NP-hard to approximate min sum set cover within
a ratio of 2 — e on uniform regular hypergraphs.

Theorem 10 shows that Theorem 12 is essentially best possible. The proof of The-
orem 12 is very similar to the proof given in [6] of the result that it is NP-hard to
approximate the mak-coverage problem within a ratio better than 1/e + €. We do
not wish to reproduce here the proof already given in [6]; instead, we provide a sketch
of the proof, using the terminology of [6].

Sketch of Proof of Theorem 12: In [6] a reduction from max 3SAT-5 to mak-
coverage is described. We note that the resulting instance ofkhcaxerage (which

is a hypergraph) isegular — each set contains the same number of points (or equiva-
lently, each vertex appears in the same number of hyperedges) — hutifosin, since

some points are covered by more sets than others (equivalently some hyperedges con-
tain more vertices than others). To make the hypergraph also uniform, we change the
starting point of the reduction. Rather than starting from a 3CNF formula in which
each variable appears in exactly five clauses, we start from a 3CNF formula in which
eachliteral appears in exactly three clauses (and each variable in six clauses). We call
the satisfiability problem for such formulas 3SAT-6. We note that for sérrel, it

is NP-hard to distinguish between satisfiable 3SAT-6 formulas, and those in which at
most aj-fraction of the clauses are satisfiable. (This can be proven by reduction from
3SAT-5, in which each variable appears 3 times in positive form and twice negated.
For a 3SAT-5 formula witm variables, join to it a satisfiable 2SAT-6 formula with
clauses on a fresh set of variables, and to each of the 2CNF clauses add one of the
original variables negated.) The adaptation of the reduction of [6] now gives a regular
uniform hypergraph; this is a consequence of the following symmetries:

1. Every clause in the CNF formula contains the same number of literals (three in
our case).

2. Every literal appears in the same number of clauses (three in our case).

3. Every code word (in the proof system of Section 2 in [6]) has exactly the same
Hamming weight {/2 when the Hadamard code is used).

4. In the partition system (proof of Theorem 12 in [6]) each part has exactly the
same sizer/k, using the notation of [6]).

Now there are two cases:

1. If the original 3SAT-6 formula is satisfiable, then the reduction has the property
that there is a collection of disjoint sets (and necessarily of equal cardinality)
that covers all points. Let us denote bthe number of sets used in such a cover.
Hence for the min sum set cover problem, a hyperedge is covered by/&tep
on average.

13



2. If the original 3SAT-6 formula was only-satisfiable (fod < 1), the reduction
has the following property:

For every choice of constantg > 0 ande > 0, it is possible to choose the
parameter/ (number of repetitions in the proof system) to be a large enough
constant so that for every < x < ¢gt, at least a fraction ol — (1 — 1/¢)* — ¢

of the points remain uncovered bysets.

The proof of this property is an extension of the proof of Theorem 12 in [6] and
is omitted. Now for an arbitrarily smadl > 0, pick ¢y ~ —Ine ande ~ ¢/cy.

We note that may be assumed to be arbitrarily large (this is always the case in
reductions to set cover, as checking whether there is a covesdig can be done

in time roughlyn!, and having constant would show that P=NP), implying that
(1—1/t) is approximated arbitrarily well by—'/t. Hence the average time step

by which a hyperedge is covered in the min sum set cover instance is roughly at

least
cot

f@) =Y ("~ o).
r=1
Approximating this sum by an integral and integrating we dg&tx) =
(—te~*/t — ex). Substituting inF' the range of the integration we gt cyt) =
—te™ —ecot ~ —2¢et,andF (1) = —te " —e~ —(t —1) —e < —t + &t.
HenceF'(cot) — F'(1) > (1 — 3¢)t, implying that a hyperedge is covered by step
(1 = O(e))t, on average.

The gap between the two cases can be made arbitrarily close to a factor of 2.

For nonregular instances afsscwe prove a stronger hardness of approximation
result which matches the positive result of Theorem 4. The proof of the following
theorem was inspired by [3].

Theorem 13 For everye > 0, it is NP-hard to approximate min sum set cover within
a ratio of4 — e on uniform hypergraphs.

Proof: The proof goes via a reduction from the regular uniform case (Theorem 12).
Consider an instance of uniform regular set cover withoints on which it is NP-hard
to distinguish between the case in which all points can be coveredtjoint sets,
and the case in which eversets cover at most a fraction df- (1 — 1/¢)¢ + € of the
points (as in the proof of Theorem 12). For a large enough conktanakek disjoint
copies of this instance. Let= (k!)2. For eachl < i < k, duplicatea/i? times each
point in copyi (all duplicates of a point appear in exactly the same sets as the point
e does). Note that the instance obtained by this process is still uniform (every point
appears in the same number of sets) but not regular (sets in @spyarger than those
in copyj, fori < j).

We claim that if mssc can be approximated within a ratio better than 4 on this
instance, then mssc can be approximated within a ratio better than 2 on the original
instance.

14



Consider first the case that the original regular mssc instance can be covered by
disjoint sets. Then the optimal way of covering the new instance is to cover it copy by
copy, starting with copy 1 and ending with copy The contribution/' (i) of copy: to
the objective function is

. . t, a
F@)=[@—-1)t+ Q]TLZ_Z.
Asymptotically, for largei we have thaf'(i) ~ tna/i. It follows that the cost of the
whole solution is roughly

k
ZF(Z) ~ ZtnTa ~ tnalnk.

=1 =1

An important consequence of this is that the contributionF¢f) to the total cost
summed over all “small” values of (e.g., for alli < 100, whenk is a sufficiently
large constant) is negligible compared to the total cost.

Consider now the case that for the original regular mssc instance, esety cover
at most a fraction of — (1 — 1/t)¢ + € of the points (for every < ¢t, wherecy is a
sufficiently large constant). In this case the best way to cover the new instance is to start
with copy 1, when only:a /22 points remain in copy 1 continue with copies 1 and 2
simultaneously, when onlya/3? points remain in each of copies 1 and 2 continue
with copies 1,2 and 3 simultaneously, and so on. Any better way of covering the new
instance gives a better way of covering the original instance, which is a contradiction.
Let I(¢) denote the contribution of copyto the objective function. This contribution
is computed as the difference in mssc cost of covering the figbies compared to the
mssc cost of covering the the first- 1 copies. This difference occurs only at the time
the first point of set gets covered. This time stepjs:;;ll tln(i%/5%). At this point,
when we need to covercopies we still havéna /i elements left, and the expected
additional time to cover each elementtis When we need to coveér— 1 copies we
still have (i — 1)na/i? elements left, and the expected additional time to cover each
elementig(i — 1). It follows that

a i—1 ;2 i—1 ;2
I(i) = ni—Q[i(Ztlnﬁ +it) — (i — 1)(Ztlnj—2 + (i — 1)t)].

Simplifying, one gets thaf (i) = ni%[zz;lltln(ﬁ/ﬁ) + (2i — 1)t]. The term
Yz tIn(i?/52) = 2377 ] t(Ini — Inj) ~ 2ti, which can be verified by approxi-
mating the sum by an integral, and noting that the integrah gfis jIn j — j. Hence
we obtain that for large,

I(i) ~ ny - Ati ~ 4F(i).
(3
Summing up, the factor 2 gap in the regular mssc problem is amplified to a factor 4 gap
in the irregular mssc problem.

O
We now prove hardness of approximation fagvc.
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Theorem 14 For somee’ > 0, it is NP-hard to approximate min sum vertex cover
within ratios better tharl + ¢'.

Proof: For some universal constaiit> 3, let G be a graph withn vertices,m
edges, and degree at mastlt is known that min vertex cover is hard to approximate
on graphs of bounded degree [1]. More specifically, for every 3 there is some
0 > 1 for which it is NP-hard to approximate min vertex cover with a ratio better than
d.

We reduce the problem of approximating min vertex cover problem on bounded
degree graphs to the problem of approximating min sum vertex cover.

Assume without loss of generality th&t does not have isolated vertices (as they
can be removed fromr without changing the optimal solution of min vertex cover).
Observe that at least/(d + 1) steps are needed to cover all edge&/pbecause each
vertex covers at most all edges connected to itself and tbntsghbors. It follows that
it is NP-hard to approximate min vertex cover Grwithin an additive factor obn/d.

Let us denoté/d by ¢, and note that is a constant greater than O.

Letk = 2%. Construct a graph”’ that is the disjoint union off andkn additional
isolated edges (i.e., vertex disjoint union@fand a matching of sizen). OnG’ we
wish to approximate min sum vertex cover. The optimal solution to min sum vertex
cover onG’ may be assumed without loss of generality to first cover all edgés of
and only then cover the isolated edges, because the isolated edges can be covered at a
rate of at most one at a time, and edge&inan be covered at a rate of at least one at
atime.

Let us consider the case th@thas a vertex cover with at mostertices. Ther’
has a min sum vertex cover of value at mos§ + kn(t + %").

Let us now consider the case th@thas no vertex cover with less thant en
vertices. Then it costs at least(t + en + %) to cover thekn isolated edges, and we
use this as a lower bound on the value of min sum vertex covesfor

The difference between the two cases is at least — m%. Usingm < dn/2
andt < n, this difference is at least?(ek — ). Usingk = -, this difference
is at Ieast%n? The optimal solution to min sum vertex cover 64 is of value
at mostm2 + kn(n + &) < k?n?%, where the last inequality follows from simple
manipulations, using > 3 ande < 1/2 (which are true in our context). Setting
¢ = 1/2k = €/d, it follows that if we could approximate min sum vertex cover in
G’ within a ratio better than + ¢’, then we could approximate min vertex coveiGn
within a ratio better thaa. [

We have not made an effort to find the best possible valuéfof Theorem 14.
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