
Combat(n) Tcl CORBA ORB Combat(n)

NAME
Combat − Tcl CORBA Object Request Broker

SYNOPSIS
package require Tcl 8.1
package require Itcl 3.0
package require combat ?0.7?

corba::init ?options ...?
corba::resolve_initial_references name
corba::list_initial_services
corba::register_initial_reference name obj
corba::string_to_object string
corba::object_to_string handle
corba::release ?typecode? value
corba::duplicate ?typecode? value
corba::dii ?options? handle spec ?args?
corba::request cmd ?args?
corba::const id
corba::type cmd ?args?
corba::throw exception
corba::try m-block ?catch {exception ?var?} e-block? ... ?finally f-block?
combat::ir cmd args

DESCRIPTION
The Combat package provides a CORBA Object Request Broker (ORB). Using Combat, you can commu-
nicate with any CORBA server using the standard IIOP protocol. This is not only useful for test-driving
your servers, but also for writing CORBA-enabled applications, especially mixed with a Tk GUI.

Object references are represented by handles, which are Tcl commands that front for invocations. This
looks quite natural:

set bank [corba::string_to_object IOR:...]
set account [$bank create]
$account deposit 1234
puts "Balance is [$account balance]"

In this example, $bank and $account are handles (strictly speaking, these are Tcl variables that contain a
command name). In an invocation, the first parameter is the operation name, and following parameters are
arguments to that operation. The format of arguments is described in the section Language Mapping below.

Combat works by reading information about the object’s interface from the Interface Repository. IDL files
must be loaded into an Interface Repository before they can be used. Read the Interface Repository section
below for more information.

COMMANDS
corba::init ?options ...?

Initializes the ORB. The command accepts an arbitrary number of options. Options starting with
the -ORB prefix are processed (see below), all list containing all other options is then returned.
corba::init can therefore be called, at the beginning of a script, as

set argv [eval corba::init $argv]

to remove all ORB-specific command-line parameters from the command line. The call to
corba::init is optional. All other commands implicitly call corba::init with an empty parameter
list if the ORB was not initialized before.

The following options are accepted:

-ORBInitRef name=value
Sets the initial reference name (see corba::resolve_initial_references) to value. The
value can have any format that is acceptable to corba::string_to_object.

Combat 0.7 1



Combat(n) Tcl CORBA ORB Combat(n)

-ORBDefaultInitRef value
Sets the default initial reference. See corba::resolve_initial_references for more infor-
mation.

-ORBDebug level
Enables debugging output (which is sent to stderr). Valid values for level are giop (GIOP
message exchange), iiop (IIOP connection handling), transport (raw GIOP data), and all
(for all of them).

-ORBServerPort port
Initializes a TCP socket to listen on port port for incoming connections. This option can
be repeated multiple times to listen on several ports. If this option is not present, a port
will be selected automatically if the RootPOA is accessed for the first time.

-ORBGIOPMaxSize value
Limits the maximum acceptable size of incoming GIOP messages. By default, GIOP
messages are accepted regardless of their size. This allows a denial of service attack on a
server by sending a huge message, eventually causing memory exhaustion. If set, GIOP
messages whose size (in octets) exceeds value cause the connection to be dropped. Each
connection will also accept up to value octets of GIOP fragments. The size of outgoing
messages is not limited by this option.

-ORBNativeCodeSet value
Sets the native codeset to be used and advertised as SNCS-C. Usually, the native codeset
is determined from encoding system. value can be an OSF registry value or Tcl encoding
name.

Any other options that start with -ORB cause an error.

corba::resolve_initial_references name
Returns the initial reference name as set upon initialization, as a handle (i.e. the value from
-ORBInitRef is passed to corba::string_to_object). If no such initial reference is configured, the
default initial reference, if configured, and name are concatenated and passed to
corba::string_to_object to return a handle. If this fails, too, the CORBA::ORB::InvalidName
exception is thrown.

corba::list_initial_services
Returns a list of names configured as initial references.

corba::register_initial_reference name obj
Registers the handle obj as an initial reference. name will appear in the result of list_initial_ser-
vices and can be used with resolve_initial_references to retrieve the handle.

corba::string_to_object string
Converts the string to an object reference, and returns a handle for that object reference. Several
formats for string are accepted:

IOR: classic CORBA format for stringified object references, a very long string consisting of
the IOR: prefix and data in hex.

corbaloc::host:port/ObjectKey
Format containing the IP address, port number and object key of the target object.

corbaname::host[:port][/Ke y][#Name]
Format referencing an entry in the Naming Service by IP address. If port is omitted, 2089
is used. Ke y is the object key of the Naming Service. If omitted, NameService is used.
Name identifies an entry in the Naming Service. This entry is read and returned. If omit-
ted, the reference of the Naming Service itself is returned.

file://[host]path
Reads the given file. host should be empty or localhost. path is an absolute path name.
The contents of this file are read and then passed to corba::string_to_object.

Combat 0.7 2



Combat(n) Tcl CORBA ORB Combat(n)

http://...
The referenced URL is pulled (for this, the http package must be present). Its contents
are then passed to corba::string_to_object.

corba::object_to_string handle
Converts the object reference represented by handle into a string, using the IOR: format.

corba::release ?typecode? value
Releases a handle. Handles (as returned from e.g. corba::string_to_object) must be released
when no longer used, or memory leakage occurs. If typecode is omitted, value must be a handle,
which is then released. If typecode is present, value must match that typecode. In that case, all
handles contained in value are released.

corba::duplicate ?typecode? value
Duplicates a handle. This method is primarily for use in server applications, see the note in the
Server Side Scripting section. If typecode is omitted, value must be a handle, which is then dupli-
cated; the new handle, which points to the same object reference, is returned. If typecode is
present, value must match that typecode. In that case, all handles contained in value are dupli-
cated, and a duplicate of the complete value is returned.

corba::dii ?options? handle spec ?args?
Initiates a remote invocation using the Dynamic Invocation Interface. Inv ocations as described in
the Invocations section normally pull type information from the Interface Repository, as described
in the Interface Repository section below. In contrast, an invocation using dii does not require type
information in the Interface Repository; here, type information is passed along with each invoca-
tion in the spec parameter, which is a list composed of three or four elements. The first element is
the typecode of the return value. The second element is the name of the operation to be invoked.
The third element describes the parameters. The fourth element is a list of exception typecodes
that this operation may throw. The parameter description is a list that contains one element per
parameter. Each parameter is described by a list of two elements. The first element is either in, out
or inout, and the second element is the typecode of the parameter type.

options can be either -async or -callback to start an asynchronous request; see below for more
information.

corba::request cmd ?args?
Manages asynchronous requests. See the Invocations section below for information about initiat-
ing asynchronous requests using the -async and -callback options to an invocation. cmd and args
can be one of

get aid This operation enters the event loop until the asynchronous request identified by aid is
finished, and then returns its result. All variables corresponding to in and out parameters
on the initial invocation are set in the current context.

poll aids ...
Checks whether any of the asynchronous requests identified by aids has finished yet. If
yes, its identifier is returned, and a subsequent get for that identifier is guaranteed not to
block. If none of the given asynchronous requests has finished, an empty string is
returned.

wait [aids ...]
Enters the event loop until any of the asynchronous requests identified by aids finishes. If
no parameter is given, all outstanding asynchronous invocations qualify. The identifier for
one finished asynchronous invocation is returned.

corba::const id
Looks up the id in the Interface Repository. id must be the Repository Id or absolute name of a
constant definition. The value of that constant is then returned as an any value.

Combat 0.7 3



Combat(n) Tcl CORBA ORB Combat(n)

corba::type cmd ?args?
Handles type definitions. cmd and args can be one of

of id Looks up the id in the Interface Repository. id must be the Repository Id or absolute
name of a type definition. The typecode of that type is returned.

match typecode value
Checks whether value matches the typecode, and returns the result as either 1 (matches)
or 0 (does not match).

equivalent tc1 tc2
Checks whether the two typecodes tc1 and tc2 are equivalent, and returns the result as
either 1 (equivalent) or 0 (not equivalent).

corba::throw exception
Throws the CORBA exception exception. This is a convenience operator; since exceptions use
Tcl’s normal error handling, you could also throw exceptions using error. See the Language Map-
ping section for information on the format of exeptions.

corba::try m-block ?catch {exception ?var?} e-block? ... ?finally f-block?
Provides a more convenient means of catching CORBA exceptions than Tcl’s native catch com-
mand (all CORBA exceptions can be caught with catch, if preferred). First, the m-block is
executed. If an exception occurs, a matching catch clause, whose exception value matches the
exception’s Repository Id, is looked for. If found, its e-block is executed, initializing the variable
denoted by var, if present, to the exception value. Whether or not an exception has occured, and
whether or not this exception has been handled by a catch clause, the optional f-block is then
executed.

If an error occured in the f-block, that error is returned. If an exception has occured, and it has
been handled by a catch clause, the result from executing its e-block are returned. Otherwise, the
result from executing m-block is returned.

To catch all exceptions, exception can be set to ... (three dots, similar to Java or C++).

Because exceptions are a specialization of Tcl errors, corba::try also responds to Tcl errors. If a
Tcl error occurs in the execution of m-block, the finally clause will also be executed. Tcl errors are
caught in a catch clause if ... is used as exception.

If there are no catch clauses, an implicit clause that catches ... is used.

combat::ir cmd args
This command can be used to load interface information into a local Interface Repository. At the
moment, the only supported value for cmd is add. args must be a string which is the result of pro-
cessing an IDL file with the idl2tcl compiler. By adding information into a local Interface Reposi-
tory, you can remove your dependency on setting up an external Interface Repository in a separate
process. See the Interface Repository section for more information.

INVOCATIONS
Operations are invoked, and attributes are accessed, using the handle as command. The first parameter to
that command is the operation name, and following parameters are arguments to that operation.

set handle [corba::string_to_object ...]
$handle ?options? operation ?args ...?

operation must be a valid operation for the type of object identified by handle, and args must match the
parameter list of that operation. For inout and out parameters, the name of a variable must be passed. In the
case of inout, that variable must contain the value to be sent. In the case of both inout and out, the variable
is set to the value returned by the operation.

The event loop is entered while waiting for the response from the server. The operation’s result is then
returned as a result from the invocation.

For attributes, use the attribute name for operation. Without an argument, the value of that attribute is

Combat 0.7 4



Combat(n) Tcl CORBA ORB Combat(n)

returned. With one argument, the attribute is set, and no value is returned.

The following operations are available for all handles:

_is_a id
Returns 1 if the object identified by the handle is or is derived from the Repository Id id. Returns 0
if the object identified by the handle is not derived from id. Throws an exception if the correct
value can not be determined.

_get_interface
Returns an object reference (as handle) to the InterfaceDef object that identifies this type in the
Interface Repository. This requires that the server is connected to a well-configured Interface
Repository.

_is_equivalent oh
Returns 1 if the object reference identified by the handle is equivalent to the object reference iden-
tified by the handle oh. Returns 0 if they can be reliably determined to be different. Throws an
exception otherwise.

_duplicate
Returns a new handle for the same object reference. You need to use this e.g. in servers which han-
dle object references. See the Server Side Scripting section below.

The following options are accepted:

-async Initiates an asynchronous invocation. Instead of entering the event loop, the invocation returns
immediately, and processing of the invocation is handled in the background, within the event loop.
Instead of returning the operation’s result, an asynchronous request identifier is returned. This
identifier can subsequently be passed to the corba::request to poll or wait for the operation to
complete and ultimately be used with the get subcommand of corba::request to receive the opera-
tion’s result. Note that the application must update the event loop in order to process asynchronous
requests.

-callback command
Again, an asynchronous invocation is initiated, and an asynchronous request identifier is returned.
If the invocation has completed, command is called at global level with the asynchronous request
identifier as single parameter. This callback procedure is expected to call corba::request get to
receive the operation’s result.

LANGUAGE MAPPING
This section describes the mapping of IDL data types to Tcl types.

Primitive Types
short, long, unsigned short, unsigned long, long long and unsigned long long values are
mapped to Tcl’s integer type. Errors may occur if a value exceeds the numerical range of Tcl’s
integer type.

float, double, long double values are mapped to Tcl’s floating point type.

string and wstring values are mapped to Tcl strings.

boolean values are accepted as 0, 1, true, false, yes and no. In a result, they are always rendered as
0 (false) and 1 (true).

octet, char and wchar values are mapped to strings of length 1.

fixed values are mapped to a floating-point value in exponential representation. Depending on their
scale and value, it may or may not be possbile to use the value in a Tcl expression.

Structs struct values are mapped to a list. For each element in the structure, there are two elements in the
list -- the first is the element name, the second is the element’s value. This allows to easily assign
structures from and to associative arrays, using array get and array set.

Combat 0.7 5



Combat(n) Tcl CORBA ORB Combat(n)

Sequences
sequence values are mapped to a list. As an exception, sequences of char, octet or wchar are
mapped to strings.

Arrays array values are mapped to a list. As an exception, arrays of char, octet or wchar are mapped to
strings.

Enumerations
enum values are mapped to the enumeration identifiers (without any namespace qualifiers).

Unions union values are mapped to a list of length 2. The first element is the discriminator, or (default)
for the default member. The second element is the appropriate union member. Note that the default
case can also be represented by a concrete value distinct from all other discriminator values.

Object References
Object references are mapped to handles. Nil object references are mapped to the integer value 0
(zero).

Exceptions
exception values are mapped to a list of length one or two. The first element is the Repository Id
for the exception. If present, the second element is the exception’s contents, equivalent to the
structure mapping. The second element may be omitted if the exception has no members. Excep-
tion handling is done using Tcl’s normal error handling mechanism; they are thrown using error
and can be caught using catch. The convenience operations corba::throw and corba::try can be
used instead (see above).

Value Types
valuetype values are mapped to a list, like structs. For each element in the inheritance hierarchy
of a valuetype, there are two elements in the list -- the first is the element name, and the second is
the element’s value. An additional member _tc_ may be present. If present, its value must be a
typecode. In an invocation, this member determines the type to be sent. This mechanism allows to
send a derived valuetype where a base valuetype is expected. If no _tc_ member is present, the
valuetype must be of the same type as requested by the parameter. In receiving a valuetype, the
_tc_ member is always added. A valuetype can also be the integer 0 (zero) for a null value. cus-
tom valuetypes are not supported.

Value Boxes
Boxed valuetype types are mapped to either the boxed type or to the integer 0 (zero) for a null
value. In the case of boxed integers, the value 0 will always be read as a null value rather than a
non-null value containing the boxed integer zero. Shoot yourself in the foot if you run into this
problem.

Typecodes
TypeCode values are mapped to a string containing a description of the typecode:

Typecodes for the primitive types void, boolean, short, long, unsigned short ,unsigned long,
long long, unsigned long long, float, double, long double, char, octet, string, any, TypeCode
are mapped to their name.

Bounded string typecodes are mapped to a list of length two. The first element of the list is the
identifier string, the second element is the bound.

Bounded wstring typecodes are mapped to a list of length two. The first element of the list is the
identifier wstring, the second element is the bound.

struct typecodes are mapped to a list of length three. The first element is the identifier struct. The
second element is the Repository Id, if available (else, the field may be empty). The third element
is a list with an even number of elements. The zeroth and other even-numbered elements are mem-
ber names, followed by the member’s typecode.

union typecodes are mapped to a list of length four. The first element is the identifier union. The
second element is the Repository Id, if available (else, the field may be empty). The third element

Combat 0.7 6



Combat(n) Tcl CORBA ORB Combat(n)

is the typecode of the discriminator. The fourth element is a list with an even number of elements.
The zeroth and other even-numbered elements are labels or the identifier default for the default
label, followed by the typecode of the associated member.

exception typecodes are mapped to a list of length three. The first element is the identifier excep-
tion, the second element the Repository Id, and the third element is a list with an even number of
elements. The zeroth and other even-numbered elements are member names, followed by the
member’s typecode.

sequence typecodes are mapped to a list of length two or three. The first element is the identifier
sequence, the second element is the typecode of the member type. The third element, if present,
denotes the sequence’s bound. Otherwise, the sequence is unbounded.

array typecodes are mapped to a list of length three. The first element is the identifier array, the
second element is the typecode of the member type, the third element is the array’s length.

enum typecodes are mapped to a list of length two. The first element is the identifier enum, the
second element is a list of the enumeration identifiers.

Object reference typecodes are mapped to a list of length two. The first element is the identifier
Object, the second element is the Repository Id of the IDL interface.

fixed typecodes are mapped to a list of length three. The first element is the identifier fixed. The
second element is the number of significant digits, the third element is the scale.

valuetype typecodes are mapped to a list of length five. The first element is the identifier value-
type. The second element is the Repository Id. The third element is a list of non-inherited mem-
bers. For each member, there are three elements in the list, a visibility (private or public), the
member name and the member’s typecode. The fourth element is the typecode of the valuetype’s
concrete base, or 0 (zero) if the valuetype does not have a concrete base. The fifth element is either
an empty string or one of the modifiers custom, abstract or truncatable.

Boxed valuetype typecodes are mapped to a list of length 3. The first element is the identifier val-
uebox. The second element is the Repository Id, and the third element is the typecode of the
boxed type.

A recursive reference to an outer type (in a struct, union or valuetype) can be expressed by a list
of length two. The first element is the identifier recursive, the second element is the Repository Id
of the outer type, which must appear in the same typecode description.

TypeCode values can be constructed manually, or retrieved from the Interface Repository using the
corba::type command.

Any any values are mapped to a list of length two. The first element is the typecode, and the second
element is the value.

INTERFACE REPOSITORY
The Interface Repository is vital for the operation of Combat, and it is important that you understand its
importance. Combat is fully dynamic and posesses no "compile-time" knowledge of interfaces. This is dif-
ferent from other language mappings (e.g. C++ or Java), where such knowlege is available by the way of an
IDL "compiler" in the form of stubs and skeletons.

Combat instead pulls the information from the Interface Repository, at runtime. You must take care that an
Interface Repository is available and correctly configured. You will have to load the Interface Repository
with the IDL files that correspond to your interfaces.

The Combat package does not include an Interface Repository, but there is one available for download on
the Combat home page, from the Mico ORB. Using that Package, you would first start and load the Inter-
face Repository using, on the command line

ird --ior /tmp/ird.ior

Combat 0.7 7



Combat(n) Tcl CORBA ORB Combat(n)

idl --feed-ir -ORBInitRef InterfaceRepository=file:///tmp/ird.ior myidlfile.idl

On the second command line, replace myidlfile.idl with the name of your IDL file. Repeat that command if
you have multiple IDL files. To make Combat use that Interface Repository, you would then use

corba::init -ORBInitRef InterfaceRepository=file:///tmp/ird.ior

That above was a quick start, but unfortunately, things are more complicated than that, which means that
you have more options to choose from. Read on for more detail.

Combat tries to do the following in order to get type information for an interface:

1 Combat sends a _get_interface request to the server. If the server is connected to a correctly con-
figured Interface Repository, this will return a pointer to a server-side Interface Repository, and
Combat will then read interface information from there. Unfortunately, few servers are set up this
way.

You can try this for yourself by invoking the _get_interface operation on a handle manually. If
you get a handle in return, all is fine. If you get a nil reference or an exception, this possibility has
failed.

2 Next, Combat looks for a Repository Id inside the object reference. Unfortunately, CORBA
allows the Repository Id field in an object reference to be empty, and the field is always empty for
object references of the corbaloc kind. If a Repository Id is found, Combat contacts its own Inter-
face Repository, which must have been configured as an initial reference by the name of Interfac-
eRepository upon corba::init, and tries to look up the Repository Id in it.

You can try this for yourself by acquiring the InterfaceRepository initial reference using
corba::resolve_initial_references, and calling its lookup_id operation with the Repository Id as
parameter. If you get a handle in return, all is fine. If you get an exception, this possibility has
failed.

3 If both strategies above fail, then you have a problem. By the way, one popular reason why the
second strategy fails is that the object reference is of a derived type, while only the base type is
registered in the Interface Repository (this frequently happens e.g. with the Naming Service,
where you load the Interface Repository with the standard CosNaming IDL, but most ORBs actu-
ally implement a type that is derived from CosNaming::NamingContextExt). Another frequent
reason is using corbaloc: object references, which do not contain a Repository Id.

In this case, you can try to force Combat into accepting a certain type for that object reference by
using the _is_a operation:

$handle _is_a id

Combat will then ask the server whether it is compatible with the Repository Id id. If yes, then
Combat will use id as the object reference’s type, and look it up as above. In the case of the Nam-
ing Service, you would e.g. use

set ns [corba::resolve_initial_references NameService]
$ns _is_a IDL:omg.org/CosNaming/NamingContextExt:1.0

The C++ version of Combat also includes a idl2tcl utility that distils IDL files into Tcl strings, which can
then be used to populate an internal Interface Repository. idl2tcl is not included here because of its depen-
dency on the C++ version of Combat and a separate ORB. Its files, however, can also be used with this Tcl
version of Combat.

SERVER SIDE SCRIPTING
Combat includes a pretty complete implementation of the Portable Object Adapter (POA). You can access
the POA by resolving the RootPOA initial reference. All operations on the POA follow the normal lan-
guage mapping rules as above.

A single exception that does not follow the language mapping rules is the third parameter of the cre-
ate_POA operation (policies), which for convenience takes a list of policy identifiers instead of a list of
policy objects.

Combat 0.7 8



Combat(n) Tcl CORBA ORB Combat(n)

Servants are mapped to [incr Tcl] (or tcl++) objects and must implement a public method _Interface that
takes no parameters and returns the Repository Id of the interface that the servant implements. Operations
are mapped to public methods, and attributes to public variables. Servant classes may optionally inherit
from PortableServer::ServantBase. This inheritance is not required per se, but only by this do servants
inherit the _this method.

If your servant has operations that handle object references, then you must be careful about memory man-
agement. As you may have noticed, object references are not (cannot be) reference counted as they are in
e.g. C++. To avoid memory leakage, the runtime releases all handles that are passed into your operations as
in or inout parameters. If you want to keep a copy, you must duplicate the handle in question using the
_duplicate method. Also, when you return a handle as result, inout or out parameter, you must return a
duplicate, if you want to keep the original handle for yourself. This rule applies recursively to all object ref-
erences embedded in other types. The corba::duplicate command exists to duplicate all handles embedded
in a type.

Note that POA references are not object references, and need not be released by corba::release.

The Cookie native type is mapped to string.

CODESET SUPPORT
Combat can use about any popular codeset as transmission codeset (TCS), thanks to Tcl’s excellent support
in this area. See the output of encoding names for supported codeset encodings. However, a matching entry
for each codeset must be present in an internal table that maps the name of the Tcl encoding to the OSF
registry values used by CORBA. Currently, this table only includes western codesets (because of the
author’s heritage and laziness). Contact the author if you want support for other codesets.

EVENT LOOP
Combat relies on fileevents for handling communication. In a synchronous invocation, the event loop is
entered until the response from the server is received (internally, update is called). When asynchronous
requests are used, the application must call update at times to allow processing to continue.

In a server, the event loop must be entered to allow reception of incoming requests. Typically, a server
application ends in a ‘vwait forever’ command, where the variable forever is never set.

FREQUENTLY ASKED QUESTIONS
All I get is IDL:omg.org/CORBA/INTF_REPOS:1.0!

This exception is thrown when Combat does not find type information for an object reference.
Make sure that an Interface Repository is available, and set up to contain the correct information.
Read the Interface Repository section above for more information.

I cannot talk to my Naming Service!
You need to configure the initial reference using -ORBInitRef (see the documentation for
corba::init and corba::string_to_object).

Most ORBs have proprietary means of locating their own services. For example the JDK ORB is
able to find its own Naming Service (tnameserv) without any options or configuration efforts by
using default, compiled-in object references. Such proprietary information is not available to
Combat, so you must configure all initial references using -ORBInitRef.

Also, in order to use the Naming Service, you will have to load the IDL for the Naming Service
into the Interface Repository.

Using corbaloc: does not work!
The problem with corbaloc: is that such object URLs do not include the Repository Id. Hence,
Combat will, as its last resort to find out the object reference’s type, send a _get_interface request
to the server, which will likely fail. See the Interface Repository section above for more informa-
tion.

The solution is to give Combat a hint about the type by sending a manual _is_a invocation with
the expected Repository Id as a parameter. Combat takes notice of succeeding _is_a requests, and
can then use that verified Repository Id for usage in the local Interface Repository, e.g.

Combat 0.7 9



Combat(n) Tcl CORBA ORB Combat(n)

$handle _is_a IDL:omg.org/CosNaming/NamingContextExt:1.0

in the case of a Naming Service that has been contacted with a corbaloc: URL.

I cannot send or receive wstrings!
Codeset handling in Combat should be pretty correct. However, the encodings for wide strings
have been pretty broken in GIOP versions prior to 1.2, and Combat refuses to send wstrings over
GIOP 1.0 or GIOP 1.1 connections. Check if the remote ORB supports GIOP 1.2 (e.g. by running
an iordump utility on its object references). You might want to switch on GIOP debug messages
-ORBDebug GIOP, for Combat’s comments on the situation.

One popular example is the ORB in JDK 1.2 or 1.3, which only supports GIOP 1.1. The ORB in
JDK 1.4 should work fine.

TODO
Combat is a reasonably complete ORB. But here are ideas for new features or sensible supporting projects.

Implement the remaining data types (long long, long double, fixed).

IIOP over SSL. Shouldn’t be hard with TLS.

Portable Interceptors.

Rewrite idl2tcl in Tcl to avoid the dependency on Combat/C++. Would be much easier if there was a gram-
mar package (a la Yacc) for Tcl.

Contact the author if you are interested in working on any of these projects, or in funding them.

SEE ALSO
The Combat homepage, http://www.fpx.de/Combat/

KEYWORDS
CORBA, IIOP, GIOP, Object Request Broker

Combat 0.7 10


