
USER’S GUIDE
BACI PCODE Disassembler

Bill Bynum/Tracy Camp
College of William and Mary/Colorado School of Mines

November 5, 2002

BACI PCODE Disassembler User’s Guide 1

Contents

1 Introduction 2

2 PCODE Instruction Format 2

3 An Example 3

4 Using the Disassembler 5

5 Using the Disassembly Listing and Interpreter to Debug Concurrent Execution 6

BACI PCODE Disassembler User’s Guide 2

1 Introduction

The purpose of this document is to provide a brief description of the BACI PCODE Disassembler and how
to use it. The disassembler will “disassemble” or “de-compile” a PCODE file produced by either the BACI
Pascal compiler, bapas, or the BACI C−− compiler, bapas. If the source files that were used to produce the
PCODE file are available, then the relevant source lines will be interspersed between the PCODE instructions
that the source lines produce.

Programs of the BACI System

program function described in
bacc BACI C−− to PCODE Compiler cmimi.ps
bapas BACI Pascal to PCODE Compiler guidepas.ps
bainterp command-line PCODE Interpreter cmimi.ps, guidepas.ps

disasm.ps
bagui Graphical user interface to the guiguide.ps

PCODE Interpreter (UNIX systems only)
badis PCODE de-compiler this document (disasm.ps)
baar PCODE archiver sepcomp.ps
bald PCODE linker sepcomp.ps

The Pascal version of the compiler and the interpreter were originally procedures in a program written
by M. Ben-Ari, based on the original Pascal compiler by Niklaus Wirth. The program source was included
as an appendix in Ben-Ari’s book, “Principles of Concurrent Programming”. The original version of the
BACI compiler and interpreter was created from that source code and was hosted on a PRIME mainframe.
After several modifications and additions, this version was ported to a PC version in Turbo Pascal, then to
Sun Pascal, and to C. Finally, the compiler and interpreter were split into two separate programs. Recently,
the C−− compiler was developed to compile source programs written in a restricted subset of C++ into
PCODE executable by the interpreter. The disassembler was developed during the summer of 1997 to
facilitate debugging the incorporation of external variables and separate compilation into the BACI system
of programs.

The average user of the BACI system will normally not be concerned with the actual PCODE generated
by the BACI compilers. However, the information provided by the disassembler might be useful to the
user who is curious about how the BACI system works. The information provided by the disassembler is
invaluable in tracking down errors in either of the compilers or in the interpreter.

2 PCODE Instruction Format

A PCODE instruction in the BACI system consists of three fields. The leftmost field is the PCODE opcode
for the instruction. The middle and right fields of the instruction, called the x and y fields, respectively, are
“modifiers” used to convey to the interpreter other information about the instruction. For example, a typical
LOAD_ADDR PCODE instruction has the form

0 1 6

The 0 is the opcode for the LOAD_ADDR PCODE instruction. The variable whose address is being pushed on
the runtime stack is located at an offset of 6 into the stackframe of the process currently running at level 1.

For a typical program containing such an instruction, the disassembler would use the symbol table and
debugging information included in the PCODE file to provide the user with a mnemonic description of the
instruction and the name of the variable whose address is being loaded:

0 1 6 LOAD_ADDR, push &i

BACI PCODE Disassembler User’s Guide 3

3 An Example

We return to the incremen.cm example used in the last section of the User’s Guide for the C−− compiler.
Here is the compiler listing:

BACI System: C-- to PCODE Compiler, 10:31 21 Oct 1997
Source file: incremen.cm Fri Sep 8 16:51:00 1995
line pc

1 0 const int m = 5;
2 0 int n;
3 0
4 0 void incr(char id)
5 0 {
6 0 int i;
7 0
8 0 for(i = 1; i <= m; i = i + 1)
9 14 {

10 14 n = n + 1;
11 19 cout << id << " n =" << n << " i =";
12 25 cout << i << " " << id << endl;
13 31 }
14 32 }
15 33
16 33 main()
17 34 {
18 34 n = 0;
19 37 cobegin
20 38 {
21 38 incr(’A’); incr(’B’); incr(’C’);
22 50 }
23 51 cout << "The sum is " << n << endl;
24 55 }

Disassembling the incremen.pco file produces the following output file:

BACI System: BenAri PCODE Disassembler, 10:33 21 Oct 1997
PCODE file: incremen.pco Thu Oct 23 06:51:10 1997

BACI System: C-- to PCODE Compiler, 10:31 21 Oct 1997
Source file: incremen.cm Fri Sep 8 16:51:00 1995
Reading from source file ’incremen.cm’

1 const int m = 5;
2 int n;
3
4 void incr(char id)
5 {
6 int i;
7
8 for(i = 1; i <= m; i = i + 1)

lc f x y PCODE
0 0 1 6 LOAD_ADDR, push &i
1 24 0 1 PUSH_LIT 1
2 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)
3 1 1 6 LOAD_VALUE, push i
4 24 0 5 PUSH_LIT 5
5 48 0 0 TEST_LE, pop(1), s[t] = (s[oldt-1] <= s[oldt])
6 15 0 32 JZER s[t] to 32, pop(1)
7 14 0 14 JUMP to 14
8 0 1 6 LOAD_ADDR, push &i

BACI PCODE Disassembler User’s Guide 4

9 1 1 6 LOAD_VALUE, push i
10 24 0 1 PUSH_LIT 1
11 52 0 0 DO_ADD, pop(1), s[t] = (s[oldt-1] + s[oldt])
12 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)
13 14 0 3 JUMP to 3

9 {
10 n = n + 1;

14 0 0 0 LOAD_ADDR, push &n
15 1 0 0 LOAD_VALUE, push n
16 24 0 1 PUSH_LIT 1
17 52 0 0 DO_ADD, pop(1), s[t] = (s[oldt-1] + s[oldt])
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

11 cout << id << " n =" << n << " i =";

19 1 1 5 LOAD_VALUE, push id
20 29 0 3 WRITE (char) s[t] to stdout, pop(1)
21 28 0 0 WRITE_RAWSTRING stab[0] to stdout
22 1 0 0 LOAD_VALUE, push n
23 29 0 1 WRITE (int) s[t] to stdout, pop(1)
24 28 0 6 WRITE_RAWSTRING stab[6] to stdout

12 cout << i << " " << id << endl;

25 1 1 6 LOAD_VALUE, push i
26 29 0 1 WRITE (int) s[t] to stdout, pop(1)
27 28 0 12 WRITE_RAWSTRING stab[12] to stdout
28 1 1 5 LOAD_VALUE, push id
29 29 0 3 WRITE (char) s[t] to stdout, pop(1)
30 63 0 0 WRITELN

13 }

31 14 0 8 JUMP to 8

14 }

32 32 0 0 EXIT_PROC

15
16 main()

33 80 0 56 SHORTCALL to 56, shortcall_reg = pc, pc = 56

17 {
18 n = 0;

34 0 0 0 LOAD_ADDR, push &n
35 24 0 0 PUSH_LIT 0
36 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

19 cobegin

37 4 0 0 COBEGIN

20 {
21 incr(’A’); incr(’B’); incr(’C’);

38 18 0 4 MARKSTACK incr
39 24 0 65 PUSH_LIT 65

BACI PCODE Disassembler User’s Guide 5

40 19 0 5 CALL, psize-1 = 5
41 3 0 1 UPDATE_DISPLAY from level 1 out to level 0
42 18 0 4 MARKSTACK incr
43 24 0 66 PUSH_LIT 66
44 19 0 5 CALL, psize-1 = 5
45 3 0 1 UPDATE_DISPLAY from level 1 out to level 0
46 18 0 4 MARKSTACK incr
47 24 0 67 PUSH_LIT 67
48 19 0 5 CALL, psize-1 = 5
49 3 0 1 UPDATE_DISPLAY from level 1 out to level 0

22 }

50 5 0 0 COEND

23 cout << "The sum is " << n << endl;

51 28 0 14 WRITE_RAWSTRING stab[14] to stdout
52 1 0 0 LOAD_VALUE, push n
53 29 0 1 WRITE (int) s[t] to stdout, pop(1)
54 63 0 0 WRITELN

24 }

55 31 0 0 HALT

++-outer-++:
56 81 0 0 SHORTRET, pc = shortcall_reg

A thorough discussion of the PCODE above would be tedious to trudge through. However, a couple of
things require explanation, since the above example varies considerably from the PCODE described in Moti
Ben-Ari’s book.

The SHORTCALL and SHORTRET instructions refer to a “register”-based call added to the PCODE inter-
preter in the summer of 1997 to handle initialization of the global variables and monitors. The stack cannot
be used in this “call”, since monitor initialization changes the stack significantly. This particular program
has no global or monitor initialization to be performed, so the SHORTCALL and SHORTRET instruction combi-
nation degenerates to a no-op.

One particular source instruction deserves careful analysis: the increment of the n variable:

10 n = n + 1;

14 0 0 0 LOAD_ADDR, push &n
15 1 0 0 LOAD_VALUE, push n
16 24 0 1 PUSH_LIT 1
17 52 0 0 DO_ADD, pop(1), s[t] = (s[oldt-1] + s[oldt])
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

The interest in this program stems from the conflict that the concurrent processes have in executing
the five PCODE instructions generated by this source instruction. A process attempting to complete the
source instruction can be suspended by the interpreter on a context switch sometime between the LOAD_ADDR
instruction and the STORE instruction. Another process can complete its STORE, which is then “cancelled”
by the original process when it resumes execution and stores its value.

4 Using the Disassembler

Usage: badis [optional_flags] pcode_filename
Optional flags:

BACI PCODE Disassembler User’s Guide 6

-h show this help
-s don’t display source code, even if available

The name of the PCODE file is required. The PCODE file is expected to have either a suffix of .pco
or a suffix of .pob, since these are the only two types of object files that the compilers of the BACI system
produce. The name of the disassembly output file will have the either the .dco or the .dob suffix, depending
on the suffix of the PCODE file that was disassembled. suffix.

If the source code that generated the PCODE file is available, then the source code lines will be inter-
leaved with the decoded PCODE instructions. The -s option disables the display of source code.

5 Using the Disassembly Listing and Interpreter to Debug Concurrent Exe-
cution

We return to the disassembly of the incremen.pco file presented in Section 2. Execution of this program by
the BACI interpreter is interesting, because it demonstrates how concurrently executing threads can conflict
when mutual access to a global variable is not exclusive. The three incr threads each increment the global
variable n five times, so the total number of times that one is added to the global variable is 15. Yet, the
value of the global variable at the end of the program is almost always less than 15.

As mentioned in Section 3, the increment of the n variable consist of the PCODE instructions:

10 n = n + 1;

14 0 0 0 LOAD_ADDR, push &n
15 1 0 0 LOAD_VALUE, push n
16 24 0 1 PUSH_LIT 1
17 52 0 0 DO_ADD, pop(1), s[t] = (s[oldt-1] + s[oldt])
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

To illustrate how the conflict between the concurrently executing copies of the incr function are occur-
ring, we will use the PCODE debugging feature of the BACI interpreter (the -d option).

$> bainterp -p -d incremen
Source file: incremen.cm Fri Sep 8 16:51:00 1995
Executing PCODE ...
33 80 0 56 SHORTCALL to 56, shortcall_reg = pc, pc = 56

(h = help)> h
Debugger Commands:

b lc -- set a break at location ’lc’
c -- continue to the next breakpoint
d -- dump the stack of the current process
d t -- dump 10 stack words from s[t] down to s[t-10]
d t b -- dump stack words from s[t] down to s[b]
h -- show this help
i -- show current breakpoints
p -- show process table
q -- terminate execution
s -- execute one PCODE instruction
RETURN -- repeat singlestep or continue
u i -- unset breakpoint[i]
w -- show where current execution is
x -- disassemble the next 10 instructions
x loc -- dissassemble 10 instructions starting at ’loc’

(h = help)> b 16
(h = help)> b 18

The plan of attack is to stop at location 16, before the PUSH_LIT instruction is executed, and at location
18, just before the STORE instruction is executed. These two places are relevant, because at 16, the value

BACI PCODE Disassembler User’s Guide 7

of n that the incr thread has read is on the top of its run-time stack, and at 18, the value that the thread is
preparing to store back into the global variable n is also on the top of its stack.

Each time each of the two breakpoints occur, we dump the stack of the currently executing thread.
Eventually, we hope to see when an increment performed by one of the threads is lost.

Continuing,

(h = help)> c
Breakpoint 0 Process #3: incr
16 24 0 1 PUSH_LIT 1

(h = help)> d
Stack for Process #3: incr from 2809 down to 2801

0 0 1 67 4 1 0 0 0
(h = help)> c
Breakpoint 1 Process #3: incr
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

(h = help)> d
Stack for Process #3: incr from 2809 down to 2801

1 0 1 67 4 1 0 0 0
(h = help)> s
19 1 1 5 LOAD_VALUE, push id

(h = help)> p

Process Table
Process Active Suspend PC xpc atomic
0 main 0 -1 51 6 0
1 incr 1 -1 1 5 0
2 incr 1 -1 1 5 0
3 incr 1 -1 19 18 0
Global Variables
type name level adr value
int n 0 0 1
Mainproc Variables
Monitor Variables
Process Variables
Process #1 incr
int i 1 6 0
char id 1 5 A
Process #2 incr
int i 1 6 0
char id 1 5 B
Process #3 incr
int i 1 6 1
char id 1 5 C

From this execution sequence, we can see that process #3 has actually stored the value 1 in the global
variable n. Note that process #3 was able to complete the five PCODE instructions that increment the global
variable n (the PCODE instructions at locations 14, 15, 16, 17, and 18) without being interrupted by a
context switch.

These five PCODE instructions form what is called a critical section. The incr process must not be
interrupted by a context switch while it is executing these instructions, otherwise, the increment of the global
variable by the interrupted process could be lost.

Continuing,

(h = help)> c
C n =1 i =1 CBreakpoint 0 Process #2: incr
16 24 0 1 PUSH_LIT 1

(h = help)> d
Stack for Process #2: incr from 2609 down to 2601

BACI PCODE Disassembler User’s Guide 8

1 0 1 66 4 1 0 0 0
(h = help)> c
Breakpoint 1 Process #2: incr
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

(h = help)> d
Stack for Process #2: incr from 2609 down to 2601

2 0 1 66 4 1 0 0 0

Note the output “C n =1 i =1 C” from process #3 that occurs before Breakpoint 0 is reached. Ev-
erything still seems normal. Process #2 reads the value of 1 from the global variable n and is prepared at
location 18 to store the value 2 back to the global variable.

Continuing,

(h = help)> c

Breakpoint 0 Process #1: incr
16 24 0 1 PUSH_LIT 1

(h = help)> d
Stack for Process #1: incr from 2409 down to 2401

2 0 1 65 4 1 0 0 0
(h = help)> c
Breakpoint 0 Process #3: incr
16 24 0 1 PUSH_LIT 1

(h = help)> d
Stack for Process #3: incr from 2809 down to 2801

2 0 2 67 4 1 0 0 0
(h = help)> c
Breakpoint 1 Process #3: incr
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

(h = help)> d
Stack for Process #3: incr from 2809 down to 2801

3 0 2 67 4 1 0 0 0
(h = help)> c
Breakpoint 1 Process #1: incr
18 38 0 0 STORE, s[s[t-1]] = s[t], pop(2)

(h = help)> d
Stack for Process #1: incr from 2409 down to 2401

3 0 1 65 4 1 0 0 0
(h = help)> p

Process Table
Process Active Suspend PC xpc atomic
0 main 0 -1 51 6 0
1 incr 1 -1 18 16 0
2 incr 1 -1 20 18 0
3 incr 1 -1 20 48 0
Global Variables
type name level adr value
int n 0 0 3
Mainproc Variables
Monitor Variables
Process Variables
Process #1 incr
int i 1 6 1
char id 1 5 A
Process #2 incr
int i 1 6 1
char id 1 5 B
Process #3 incr
int i 1 6 2
char id 1 5 C

BACI PCODE Disassembler User’s Guide 9

First, note the newline that follows the c command to the interpreter. This newline is printed by process
#3 to complete its output.

Apparently, process #2 was able to store the value of 2 in the global variable n, because process #1 has
read this value and pushed it onto its runtime stack. However, trouble is beginning to happen here, because
process #3 reads the same value of 2 from the global variable n. This has is evidently happened because
process #1 was interrupted by a context switch before it was able to store its updated value of 3 back to the
global variable.

The -p option given when the interpreter was invoked causes the interpreter to write to an external file
the exact interleaving of PCODE instructions that occurred during the execution of the program. When we
check this file (incremen.xpc), we can verify that the awkward context switch described in the previous
paragraph did indeed occur.

instruction process PCODE
count number location

81 1 14
82 1 15
83 1 16
84 1 17
85 3 16
86 3 17
87 3 18
88 3 19
89 1 18
90 1 19
99 2 20

Note that after process #1 executed instruction number 84, the DO_ADD instruction, a context switch occurs
and process #3 then executes the instructions at locations 16, 17, 18, and 19, The STORE instruction at
location 18 stores the value of 3 that process #3 has on its stack back to the global variable n.

Then, process #1 receives a chance to run and executes the instructions at locations 18 and 19. When
process #1 executes the STORE instruction at location 18, this overwrites the value of 3 stored by process
#3 with the value of 3 stored by process #1. In this way, the work of incrementing the global variable by
process #3 is lost.

Now that we have seen how things have begun to go wrong, we can allow the program to complete by
unsetting the two breakpoints:

(h = help)> u 0
(h = help)> u 1
(h = help)> c
A n =3 i =1 B n =3C n =3 i =A
2 i =C1
B
A n =4 i =2 A
C n =5B i =3 n =A n =7 i =2 B7 i =
3 A
C
A n =8 i =4 A
C n =9 i =4 C
A n =10B n =10 i = i =5 3 A
B
C n =11 i =5 C
B n =12 i =4 B
B n =13 i =5 B
The sum is 13

PCODE execution trace stored in incremen.xpc

BACI PCODE Disassembler User’s Guide 10

Since the sum kept in the global variable n turned out to be 13 at termination, it is clear that the conflict
described in the previous paragraphs must have occurred once more during the remainder of execution.

